\(log_{a^3}b.log_ba\)

b) \(log_...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 1 2024

\(log_{a^3}b.log_ba=\dfrac{1}{3}.log_ab.log_ba=\dfrac{1}{3}\)

\(log_{a^{10}}b^5.log_{b^3}a^9=\dfrac{1}{10}.5.log_ab.\dfrac{1}{3}.9.log_ba=\dfrac{3}{2}\)

\(log_{a^{107}}b^{101}.log_{b^{303}}a^{428}=\dfrac{1}{107}.101.log_ab.\dfrac{1}{303}.428.log_ba=\dfrac{4}{3}.log_ab.log_ba=\dfrac{4}{3}\)

a: \(log_{a^3}b\cdot log_ba=\dfrac{1}{3}\cdot log_ab\cdot log_ba=\dfrac{1}{3}\)

b: \(log_{a^{10}}b^5\cdot log_{b^3}a^9\)

\(=\dfrac{1}{10}\cdot log_ab^5\cdot\dfrac{1}{3}\cdot log_ba^9\)

\(=\dfrac{1}{30}\cdot5\cdot log_ab\cdot9\cdot log_ba=\dfrac{45}{30}=\dfrac{3}{2}\)

c: \(log_{a^{107}}b^{101}\cdot log_{b^{303}}a^{428}\)

\(=\dfrac{1}{107}\cdot log_ab^{101}\cdot\dfrac{1}{303}\cdot log_ba^{428}\)

\(=\dfrac{1}{107}\cdot101\cdot log_ab\cdot\dfrac{1}{303}\cdot428\cdot log_ba\)

\(=4\cdot\dfrac{1}{3}=\dfrac{4}{3}\)

NV
12 tháng 1 2024

\(log_{a^4}b^4.log_ba^5=\dfrac{1}{4}.4.log_ab.5.log_ba=5.log_ab.log_ba=5\)

\(log_{a^3}b^2.log_ba^4=\dfrac{1}{3}.2.log_ab.4.log_ba=\dfrac{8}{3}.log_ab.log_ba=\dfrac{8}{3}\)

\(log_{a^{15}}b^7.log_{b^{49}}a^{30}=\dfrac{1}{15}.7.log_ab.\dfrac{1}{49}.30.log_ba=\dfrac{2}{7}log_ab.log_ba=\dfrac{2}{7}\)

\(log_{a^{2021}}b^{2020}.log_{b^{4040}}a^{6063}=\dfrac{1}{2021}.2020.log_ab.\dfrac{1}{4040}.6063.log_ba=\dfrac{3}{2}\)

NV
11 tháng 1 2024

1.

Ta có:

\(\left(n+1\right)^2=n^2+2n+1>n\left(n+2\right)\)

Lấy logarit 2 vế:

\(ln\left(n+1\right)^2>ln\left[n\left(n+2\right)\right]\)

\(\Rightarrow2ln\left(n+1\right)>ln\left(n\right)+ln\left(n+2\right)\ge2\sqrt{ln\left(n\right).ln\left(n+2\right)}\)

\(\Rightarrow ln^2\left(n+1\right)>ln\left(n\right).ln\left(n+2\right)\)

\(\Rightarrow\dfrac{ln\left(n+1\right)}{ln\left(n\right)}>\dfrac{ln\left(n+2\right)}{ln\left(n+1\right)}\)

\(\Rightarrow log_n\left(n+1\right)>log_{n+1}\left(n+2\right)\)

NV
11 tháng 1 2024

2.

\(\int\dfrac{x^3-1}{x^4+x}dx=\int\dfrac{2x^3-\left(x^3+1\right)}{x\left(x^3+1\right)}dx=\int\dfrac{2x^2}{x^3+1}dx-\int\dfrac{1}{x}dx\)

\(=\dfrac{2}{3}\int\dfrac{d\left(x^3+1\right)}{x^3+1}-\int\dfrac{dx}{x}\)

\(=\dfrac{2}{3}ln\left|x^3+1\right|-ln\left|x\right|+C\)

NV
24 tháng 11 2019

\(\frac{P_nC_n^k}{n!A_n^k}=\frac{n!.\frac{n!}{k!\left(n-k\right)!}}{n!.\frac{n!}{\left(n-k\right)!}}=\frac{1}{k!}\)

Chắc là bạn ghi nhầm đề

NV
27 tháng 4 2019

Để giá trị của giới hạn là một số thực xác định thì biểu thức trên tử số ít nhất phải có nghiệm kép \(x=1\)

Đặt \(f\left(x\right)=\sqrt{3x-2}+\sqrt[3]{3x+5}+ax+b\)

\(f\left(1\right)=a+b+3=0\Rightarrow b=-3-a\)

Thay ngược lại vào \(f\left(x\right)\)

\(f\left(x\right)=\sqrt{3x-2}+\sqrt[3]{3x+5}+ax-3-a\)

\(f\left(x\right)=\frac{3\left(x-1\right)}{\sqrt{3x-2}+1}+\frac{3\left(x-1\right)}{\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4}+a\left(x-1\right)\)

\(f\left(x\right)=\left(x-1\right)\left(\frac{3}{\sqrt{3x-2}+1}+\frac{3}{\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4}+a\right)\)

\(\Rightarrow\) Để \(f\left(x\right)\) có nghiệm kép \(x=1\) thì

\(g\left(x\right)=\frac{3}{\sqrt{3x-2}+1}+\frac{3}{\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4}+a\) có ít nhất một nghiệm \(x=1\)

\(g\left(1\right)=\frac{3}{2}+\frac{3}{4+4+4}+a=0\Rightarrow a=-\frac{7}{4}\Rightarrow b=-\frac{5}{4}\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\frac{\sqrt{3x-2}+\sqrt[3]{3x+5}-\frac{7}{4}x-\frac{5}{4}}{x^2-2x+1}=-\frac{37}{32}\)

\(\Rightarrow P=\frac{-\frac{7}{4}-\frac{5}{4}}{-\frac{37}{32}}=\frac{96}{37}\)

NV
28 tháng 4 2019

Chỉ cần viết tử số thôi nhé, ta quy đồng 4 lên rồi đưa 4 xuông mẫu, sau đó tách tử số thành

\(\frac{1}{4}\left(4\sqrt{3x-2}-2\left(3x-1\right)+4\sqrt[3]{3x+5}-\left(x+7\right)\right)\)

\(=\frac{1}{4}\left(\frac{2\left[4\left(3x-2\right)-\left(3x-1\right)^2\right]}{2\sqrt{3x-2}+3x-1}+\frac{4^3\left(3x+5\right)-\left(x+7\right)^3}{16\sqrt[3]{\left(3x+5\right)^2}+4\sqrt[3]{3x+5}\left(x+7\right)+\left(x+7\right)^2}\right)\)

\(=\frac{1}{4}\left(\frac{2\left(18x-9x^2-9\right)}{2\sqrt{3x-2}+3x-1}+\frac{45x-x^3-21x^2-23}{16\sqrt[3]{\left(3x+5\right)^2}+4\sqrt[3]{3x+5}\left(x+7\right)+\left(x+7\right)^2}\right)\)

\(=\frac{1}{4}\left(\frac{-18\left(x^2-2x+1\right)}{2\sqrt{3x-2}+3x-1}+\frac{-\left(x+23\right)\left(x^2-2x+1\right)}{16\sqrt[3]{\left(3x+5\right)^2}+4\sqrt[3]{3x+5}\left(x+7\right)+\left(x+7\right)^2}\right)\)

\(=\frac{\left(x^2-2x+1\right)}{4}\left(\frac{-18}{2\sqrt{3x-2}+3x-1}-\frac{x+23}{16\sqrt[3]{\left(3x+5\right)^2}+4\sqrt[3]{3x+5}\left(x+7\right)+\left(x+7\right)^2}\right)\)

Rút gọn \(x^2-2x+1\) với mẫu số và thay \(x=1\) vào