K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{3}{2\left(2x-1\right)}\cdot x^2\left|2x-1\right|\cdot2\sqrt{2}\)

\(=\pm3\sqrt{2}x^2\)

\(B=\dfrac{a-b}{b^2}\cdot\dfrac{b^2\cdot\left|a\right|}{\left|a-b\right|}\)

\(=\pm\left|a\right|\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

Câu a, bạn coi lại đề xem $a^2=6-3\sqrt{3}$ hay $a=6-3\sqrt{3}$???

 

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

b.

\(B=\frac{\sqrt{(x-2)+(x+2)+2\sqrt{(x-2)(x+2)}}}{\sqrt{x^2-4}+x+2}\)

\(=\frac{\sqrt{(\sqrt{x-2}+\sqrt{x+2})^2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x+2}(\sqrt{x-2}+\sqrt{x+2})}=\frac{1}{\sqrt{x+2}}\)

\(=\frac{1}{\sqrt{3+\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{6+2\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{(\sqrt{5}+1)^2}}=\frac{\sqrt{2}}{\sqrt{5}+1}\)

26 tháng 11 2021

\(A=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\\ A=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\\ A=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

\(B=\dfrac{7a-7b+8a+8b-16b}{\left(a+b\right)\left(a-b\right)}=\dfrac{15a-15b}{\left(a-b\right)\left(a+b\right)}\\ B=\dfrac{15\left(a-b\right)}{\left(a-b\right)\left(a+b\right)}=\dfrac{15}{a+b}\)

9 tháng 10 2021

a) \(\sqrt{36\left(x-5\right)^2}=6\left|x-5\right|\)

\(=6\left(x-5\right)\) (khi \(x\ge5\))

hoặc \(=6\left(5-x\right)\) (khi \(x< 5\))

b) \(\sqrt{\dfrac{1}{4}\left(1-x\right)^2}=\dfrac{1}{2}\left|1-x\right|\)

\(=\dfrac{1}{2}\left(1-x\right)\) (khi \(x\le1\))

hoặc \(=\dfrac{1}{2}\left(x-1\right)\) (khi \(x>1\))

c) \(\sqrt{x^2\left(2x-4\right)^2}=\left|x\right|\left|2x-4\right|\)

\(=x\left(2x-4\right)\) (khi \(x\ge2\))

hoặc \(=x\left(4-2x\right)\) (khi \(0\le x< 2\))

hoặc \(=-x\left(4-2x\right)\) (khi \(x< 0\))

a) Ta có: \(A=\left(\dfrac{1}{\sqrt{a}+2}+\dfrac{1}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}}{a-4}\)

\(=\dfrac{\sqrt{a}-2+\sqrt{a}+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\cdot\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\sqrt{a}}\)

=2

b) Ta có: \(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}-1}{x^2}\)

\(=\dfrac{4x-1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{x^2}\)

\(=\dfrac{4x-1}{x^2}\)

15 tháng 4 2022

\(a,A=\dfrac{1}{2-\sqrt{3}}+\dfrac{1}{2+\sqrt{3}}\)

\(=\dfrac{2+\sqrt{3}+2-\sqrt{3}}{2^2-\sqrt{3}^2}\)

\(=\dfrac{4}{1}=4\)

Vậy \(A=4\)

\(b,B=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}-1}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(=\left(\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

Vậy \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}\) với \(x>0,x\ne1\)

a: \(=2+\sqrt{3}+2-\sqrt{3}=4\)

b: \(=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)