
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1:
a: \(\left(2a-b\right)\left(4a^2+2ab+b^2\right)\)
\(=8a^3+4a^2b+2ab^2-4a^2b-2ab^2-b^3\)
\(=8a^3-b^3\)
b: \(\left(3a+b\right)\left(9a^2-3ab+b^2\right)\)
\(=27a^3-9a^2b+3ab^2+9a^2b-3ab^2+b^3\)
\(=27a^3+b^3\)
c: \(\left(3a+2b\right)\left(3a-2b\right)-9a^2\)
\(=\left(3a\right)^2-\left(2b\right)^2-9a^2\)
\(=9a^2-4b^2-9a^2=-4b^2\)
d: \(\left(2x-3y\right)^2=\left(2x\right)^2-2\cdot2x\cdot3y+\left(3y\right)^2\)
\(=4x^2-12xy+9y^2\)
e: \(\left(3x-2y\right)^3=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)
\(=27x^3-54x^2y+36xy^2-8y^3\)
Bài 2:
a: \(\left(3x-5\right)\left(-5x+7\right)-\left(5x+2\right)\left(-3x+2\right)=4\)
=>\(-15x^2+21x+25x-35-\left(-15x^2+10x-6x+4\right)=4\)
=>\(-15x^2+46x-35+15x^2-4x-4=4\)
=>42x-39=4
=>42x=43
=>\(x=\frac{43}{42}\)
b: \(6x^2-\left(2x+5\right)\left(3x-2\right)=7\)
=>\(6x^2-6x^2+4x-15x+10=7\)
=>-11x=7-10=-3
=>\(x=\frac{3}{11}\)

Bài 7:
a: Xét tứ giác AECF có
D là trung điểm chung của AC và EF
=>AECF là hình bình hành
=>AE//CF và AE=CF
Ta có: AE//CF
=>CF//BE
ta có: AE=CF
AE=BE
Do đó: CF=BE
Xét tứ giác BEFC có
BE//FC
BE=FC
Do đó: BEFC là hình bình hành
b: BEFC là hình bình hành
=>EF//BC
=>DK//BC
Xét tứ giác BDKC có
BD//KC
BC//DK
Do đó: BDKC là hình bình hành
Bài 9:
a: Ta có: BH⊥AC
CF⊥CA
Do đó: BH//CF
Ta có: CH⊥AB
BF⊥BA
Do đó: CH//BF
Xét tứ giác BHCF có
BH//CF
BF//CH
Do đó: BHCF là hình bình hành
b: Xét tứ giác ABFC có \(\hat{ABF}+\hat{ACF}+\hat{BAC}+\hat{BFC}=360^0\)
=>\(\hat{BAC}+\hat{BFC}=360^0-90^0-90^0=180^0\)

a: Xét tứ giác AEDF có \(\hat{AED}=\hat{AFD}=\hat{FAE}=90^0\)
nên AEDF là hình chữ nhật
b: AEDF là hình chữ nhật
=>DF//AE và DF=AE
DF//AE
=>GF//AE
Ta có DF=AE
DF=FG
Do đó: GF=AE
Xét tứ giác AEFG có
AE//FG
AE=FG
Do đó: AEFG là hình bình hành
c: AEDF là hình chữ nhật
=>AD cắt EF tại trung điểm của mỗi đường
mà H là trung điểm của AD
nên H là trung điểm của FE
AEDF là hình chữ nhật
=>AD=FE
mà \(HA=HD=\frac{AD}{2};HF=HE=\frac{EF}{2}\)
nên \(HA=HD=HF=HE=\frac{EF}{2}=\frac{AD}{2}\)
HI=HF
\(HF=HA\)
\(HA=\frac{AD}{2}\)
Do đó: \(IH=\frac{AD}{2}\)
Xét ΔIAD có
IH là đường trung tuyến
\(IH=\frac{AD}{2}\)
Do đó: ΔIAD vuông tại I
=>IA⊥ID


a: Xét tứ giác DIHK có
góc DIH=góc DKH=góc KDI=90 độ
nên DIHK là hình chữ nhật
b: Xét tứ giác IHAK có
IH//AK
IH=AK
Do đó: IHAK là hình bình hành
=>B là trung điểm chung của IA và HK
Xét ΔIKA có IC/IK=IB/IA
nên BC//KA
Xét ΔIDA có IB/IA=IM/ID
nên BM//DA
=>B,C,M thẳng hàng
1: =x^3-6x^2+12x-8+x^3+6x^2+12x-8
=2x^3+24x
2: =x^3-3x^2+3x-1-x^3-3x^2-3x-1
=-6x^2-2
3: =1-3x+3x^2-x^3+x^3+9x^2+27x+27
=24x+12x^2+28
4: =x^3+6x^2y+12xy^2+8y^3-x^3+6x^2y-12xy^2+8y^3
=12x^2y+16y^3
5: =y^3-3y^2x+3yx^2-x^3-8x^3+12x^2y-6xy^2+y^3
=2y^3-9xy^2+15x^2y-9x^3
7: =8x^3-36x^2+54x-27-2x(4x^2+4x+1)
=8x^3-36x^2+54x-27-8x^3-8x^2-2x
=-44x^2+52x-27
8: =27x^3-27x^2+9x-1-27x^3-27x^2
=-54x^2+9x-1