K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2023

a) \(x-2y-\sqrt{x^2-4xy+4y^2}\)

\(=x-2y-\sqrt{\left(x-2y\right)^2}\)

\(=x-2y-\left|x-2y\right|\)

TH1: \(x-2y--\left(x-2y\right)\)

\(=x-2y+x-2y\)

\(=2x-4y\)

TH2: \(x-2y-\left(x-2y\right)\)

\(=x-2y-x+2y\)

\(=0\)

b) \(x^2+\sqrt{x^4-8x^2+16}\)

\(=x^2+\sqrt{\left(x^2-4\right)^2}\)

\(=x^2+\left|x^2-4\right|\)

TH1: 

\(x^2+-\left(x^2-4\right)\)

\(=x^2-x^2+4\)

\(=4\)

TH2: 

\(x^2+\left(x^2-4\right)\)

\(=x^2+x^2-4\)

\(=2x^2-4\)

c) \(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\) (x>5)

\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}\)

\(=2x-1-\sqrt{x-5}\)

d) \(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\) (\(x>\sqrt{2}\))

\(=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}\)

\(=\sqrt{x^2-2}\)

e) \(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)

\(=\left|x^2-4\right|+\dfrac{x-4}{\sqrt{\left(x-4\right)^2}}\)

\(=\left|x^2-4\right|+\sqrt{\dfrac{\left(x-4\right)^2}{\left(x-4\right)^2}}\)

\(=\left|x^2-4\right|+1\)

TH1: 

\(x^2-4+1\)

\(=x^2-3\)

TH2:

\(-\left(x^2-4\right)+1\)

\(=-x^2+4+1\)

\(=-x^2+5\)

a: \(A=x-2y-\sqrt{x^2-4xy+4y^2}\)

=x-2y-|x-2y|

Khi x>=2y thì A=x-2y-x+2y=0

Khi x<2y thì A=x-2y+x-2y=2x-4y

b: \(B=x^2+\sqrt{x^4-8x^2+16}\)

\(=x^2+\left|x^2-4\right|\)

TH1: x>=2 hoặc x<=-2

B=x^2+x^2-4=2x^2-4

TH2: -2<=x<=2

B=x^2+4-x^2=4

c: \(C=2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)

\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}=2x-1-\sqrt{x-5}\)

d: \(D=\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}=\sqrt{x^2-2}\)

11 tháng 8 2018

\(a.\sqrt{1-4a+4a^2}-2a=\sqrt{\left(1-2a\right)^2}-2a=\left|1-2a\right|-2a\)

*\(a>\dfrac{1}{2}\Rightarrow\left|1-2a\right|-2a=2a-1-2a=4a-1\)

* \(a\le\dfrac{1}{2}\Rightarrow\left|1-2a\right|-2a=1-2a-2a=1-4a\)

\(b.x-2y-\sqrt{x^2-4xy+4y^2}=x-2y-\sqrt{\left(x-2y\right)^2}=x-2y-\left|x-2y\right|\)

* \(x\ge2y\Rightarrow x-2y-\left|x-2y\right|=x-2y-x+2y=2x\)

* \(x< 2y\Rightarrow x-2y-\left|x-2y\right|=x-2y-2y+x=2x-4y\)

\(c.x^2+\sqrt{x^4-8x^2+16}=x^2+\sqrt{\left(x^2-4\right)^2}=x^2+\left|x^2-4\right|\)

* \(x^2-4\ge0\Rightarrow x^2+\left|x^2-4\right|=x^2+x^2-4=2x^2-4\)

* \(x^2-4< 0\Rightarrow x^2+\left|x^2-4\right|=x^2+4-x^2=4\)

\(d.2x-1-\dfrac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\dfrac{\sqrt{\left(x-5\right)^2}}{x-5}=2x-1-\dfrac{\left|x-5\right|}{x-5}\)

* \(x\ge5\Rightarrow2x-1-\dfrac{\left|x-5\right|}{x-5}=2x-1-1=2x-2\)

* \(x< 5\Rightarrow2x-1-\dfrac{\left|x-5\right|}{x-5}=2x-1+1=2x\)

\(e.\dfrac{\sqrt{x^4-4x^2+4}}{x^2-2}=\dfrac{\sqrt{\left(x^2-2\right)^2}}{x^2-2}=\dfrac{\left|x^2-2\right|}{x^2-2}\)

* \(x^2\ge2\Rightarrow\dfrac{\left|x^2-2\right|}{x^2-2}=1\)

* \(x^2< 2\Rightarrow\dfrac{\left|x^2-2\right|}{x^2-2}=-1\)

\(f.\sqrt{\left(x-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}=\left|x-4\right|+\dfrac{x-4}{\sqrt{\left(x-4\right)^2}}=\left|x-4\right|+\dfrac{x-4}{\left|x-4\right|}\)

* \(x\ge4\Rightarrow\left|x-4\right|+\dfrac{x-4}{\left|x-4\right|}=x-4+\dfrac{x-4}{x-4}=x-5\)

* \(x< 4\Rightarrow\left|x-4\right|+\dfrac{x-4}{\left|x-4\right|}=4-x-1=5-x\)

30 tháng 7 2018

\(2x-1-\dfrac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\dfrac{\sqrt{\left(x-5\right)^2}}{x-5}=2x-1-\dfrac{\left|x-5\right|}{x-5}=\left[{}\begin{matrix}2x-1-1=2x-2khix-5>0\\2x-1+1=2xkhix-5< 0\end{matrix}\right.\)

30 tháng 7 2018

b) \(\dfrac{\sqrt{x^2-4x+4}}{x^2-2}=\dfrac{\sqrt{\left(x-2\right)^2}}{x^2-2}=\left[{}\begin{matrix}\dfrac{x-2}{x^2-2}khix-2\ge0\\\dfrac{2-x}{x^2-2}khix-2\le0\end{matrix}\right.\)

14 tháng 7 2017

\(a,\sqrt{1-4a+4a^2}-2a\)

\(=\sqrt{\left(1-2a\right)^2}-2a\)

\(=1-2a-2a\)

\(=1-4a\)

\(b,x-2y-\sqrt{x^2-4xy+4y^2}\)

\(=x-2y-\sqrt{\left(x-2y\right)^2}\)

\(=x-2y-\left(x-2y\right)\)

\(=x-2y-x+2y\)

\(=0\)

\(c,x^2+\sqrt{x^4-8x^2+16}\)

\(=x^2+\sqrt{\left(x^2-4\right)^2}\)

\(=x^2+x^2-4\)

\(=2x^2-4\)

Các câu còn lại tương tự nha

14 tháng 7 2017

\(a,\sqrt{1-4a+4a^2}-2a\)

\(=\sqrt{\left(1-2a\right)^2}-2a\)

\(=\left(1-2a\right)-2a\)

\(=1-4a\)

\(b,x-2y-\sqrt{x^2-4xy+4y^2}\)

\(=x-2y-\sqrt{\left(x-2y\right)^2}\)

\(=x-2y-\left(x-2y\right)\)

\(=x-2y-x+2y\)

\(=0\)

\(c,x^2+\sqrt{x^4-8x^2+16}\)

\(=x^2+\sqrt{\left(x^2-2^2\right)^2}\)

\(=x^2+\left(x^2-4\right)\)

\(=x^2+x^2-4\)

\(=2x^2-4\)

\(d,2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}\)

\(=2x-1-\frac{\sqrt{\left(x-5\right)^2}}{x-5}\)

\(=2x-1-\frac{x-5}{x-5}\)

\(=2x-1-1\)

\(=2x-2\)

\(=2\left(x-1\right)\)

31 tháng 7 2018

BTVN nhiều nhỉ?

a,A=-1

b,B=2x-4y

c,C=2x^2-4

Bài 1: 

a: \(A=\left|2a-1\right|-2a\)

TH1: a>=1/2

A=2a-1-2a=-1

TH2: a<1/2

A=1-2a-2a=1-4a

b: \(B=x-2y-\left|x-2y\right|\)

TH1: x>=2y

A=x-2y-x+2y=0

TH2: x<2y

A=x-2y+x-2y=2x-4y

c: \(=x^2+\left|x^2-4\right|\)

TH1: x>=2 hoặc x<=-2

\(A=x^2+x^2-4=2x^2-4\)

TH2: -2<x<2

\(A=x^2+4-x^2=4\)

d: \(D=2x-1-\dfrac{\left|x-5\right|}{x-5}\)

TH1: x>5

\(D=2x-1-1=2x-2\)

TH2: x<5

D=2x-1+1=2x

2 tháng 7 2017

bổ sung: ý a) điều kiện x<2

AH
Akai Haruma
Giáo viên
1 tháng 9 2019

Lời giải:

a)

\(\sqrt{1-4a+4a^2}-2a=\sqrt{1-2.2a+(2a)^2}-2a\)

\(=\sqrt{(2a-1)^2}-2a=|2a-1|-2a=(2a-1)-2a=-1\)

(do $a\geq \frac{1}{2}$ nên $|2a-1|=2a-1$)

b)

\(x-2y-\sqrt{x^2-4xy+4y^2}=x-2y-\sqrt{(x-2y)^2}=x-2y-|x-2y|\)

\(=x-2y-(2y-x)=2(x-2y)\)

(do $x< 2y$ nên $|x-2y|=-(x-2y)=2y-x$)

c)

\(x^2+\sqrt{x^4-8x^2+16}=x^2+\sqrt{(x^2)^2-2.4.x^2+4^2}\)

\(=x^2+\sqrt{(x^2-4)^2}=x^2+|x^2-4|=x^2+(4-x^2)=4\)

(do $x^2< 4$ nên $|x^2-4|=4-x^2$)

18 tháng 8 2017

\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=m\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(2-\sqrt{x-4}\right)^2}=m\)

\(\Leftrightarrow\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|=m\)

\(\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|\)

\(\ge\left|\sqrt{x-4}+2+2-\sqrt{x-4}\right|=4\)

\(\Rightarrow m\ge4\) thì pt trên có no

18 tháng 8 2017

cảm ơn bạn.