Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)=1-4a
b) = 2x - 4y
c) = 2x - 2 (nếu x>5)
=2x(nếu x<5)
Lời giải:
a)
\(\sqrt{1-4a+4a^2}-2a=\sqrt{1-2.2a+(2a)^2}-2a\)
\(=\sqrt{(2a-1)^2}-2a=|2a-1|-2a=(2a-1)-2a=-1\)
(do $a\geq \frac{1}{2}$ nên $|2a-1|=2a-1$)
b)
\(x-2y-\sqrt{x^2-4xy+4y^2}=x-2y-\sqrt{(x-2y)^2}=x-2y-|x-2y|\)
\(=x-2y-(2y-x)=2(x-2y)\)
(do $x< 2y$ nên $|x-2y|=-(x-2y)=2y-x$)
c)
\(x^2+\sqrt{x^4-8x^2+16}=x^2+\sqrt{(x^2)^2-2.4.x^2+4^2}\)
\(=x^2+\sqrt{(x^2-4)^2}=x^2+|x^2-4|=x^2+(4-x^2)=4\)
(do $x^2< 4$ nên $|x^2-4|=4-x^2$)
\(a,\sqrt{1-4a+4a^2}-2a\)
\(=\sqrt{\left(1-2a\right)^2}-2a\)
\(=1-2a-2a\)
\(=1-4a\)
\(b,x-2y-\sqrt{x^2-4xy+4y^2}\)
\(=x-2y-\sqrt{\left(x-2y\right)^2}\)
\(=x-2y-\left(x-2y\right)\)
\(=x-2y-x+2y\)
\(=0\)
\(c,x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\sqrt{\left(x^2-4\right)^2}\)
\(=x^2+x^2-4\)
\(=2x^2-4\)
Các câu còn lại tương tự nha
\(a,\sqrt{1-4a+4a^2}-2a\)
\(=\sqrt{\left(1-2a\right)^2}-2a\)
\(=\left(1-2a\right)-2a\)
\(=1-4a\)
\(b,x-2y-\sqrt{x^2-4xy+4y^2}\)
\(=x-2y-\sqrt{\left(x-2y\right)^2}\)
\(=x-2y-\left(x-2y\right)\)
\(=x-2y-x+2y\)
\(=0\)
\(c,x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\sqrt{\left(x^2-2^2\right)^2}\)
\(=x^2+\left(x^2-4\right)\)
\(=x^2+x^2-4\)
\(=2x^2-4\)
\(d,2x-1-\frac{\sqrt{x^2-10x+25}}{x-5}\)
\(=2x-1-\frac{\sqrt{\left(x-5\right)^2}}{x-5}\)
\(=2x-1-\frac{x-5}{x-5}\)
\(=2x-1-1\)
\(=2x-2\)
\(=2\left(x-1\right)\)
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé. Viết thế này khó đọc quá.
\(x+2y-\sqrt{x^2-4xy+4y^2}\)(sửa đề)
\(=x+2y-\sqrt{\left(x-2y\right)^2}\)
\(=x+2y-\left|x-2y\right|\)
\(=x+2y-\left(x-2y\right)\left(vì.x\ge2y\right)\)
\(=x+2y-x+2y\)
\(=4y\)
\(x+2y-\sqrt{x^2-4xy+4y^2}^2\)
\(=x+2y-\sqrt{\left(x-2y\right)^2}^2\)
\(=x+2y-\left(x-2y\right)^2\)
\(=x+2y-x^2+4xy-4y^2\)
a) \(x-2y-\sqrt{x^2-4xy+4y^2}\)
\(=x-2y-\sqrt{\left(x-2y\right)^2}\)
\(=x-2y-\left|x-2y\right|\)
TH1: \(x-2y--\left(x-2y\right)\)
\(=x-2y+x-2y\)
\(=2x-4y\)
TH2: \(x-2y-\left(x-2y\right)\)
\(=x-2y-x+2y\)
\(=0\)
b) \(x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\sqrt{\left(x^2-4\right)^2}\)
\(=x^2+\left|x^2-4\right|\)
TH1:
\(x^2+-\left(x^2-4\right)\)
\(=x^2-x^2+4\)
\(=4\)
TH2:
\(x^2+\left(x^2-4\right)\)
\(=x^2+x^2-4\)
\(=2x^2-4\)
c) \(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\) (x>5)
\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}\)
\(=2x-1-\sqrt{x-5}\)
d) \(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\) (\(x>\sqrt{2}\))
\(=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}\)
\(=\sqrt{x^2-2}\)
e) \(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)
\(=\left|x^2-4\right|+\dfrac{x-4}{\sqrt{\left(x-4\right)^2}}\)
\(=\left|x^2-4\right|+\sqrt{\dfrac{\left(x-4\right)^2}{\left(x-4\right)^2}}\)
\(=\left|x^2-4\right|+1\)
TH1:
\(x^2-4+1\)
\(=x^2-3\)
TH2:
\(-\left(x^2-4\right)+1\)
\(=-x^2+4+1\)
\(=-x^2+5\)
a: \(A=x-2y-\sqrt{x^2-4xy+4y^2}\)
=x-2y-|x-2y|
Khi x>=2y thì A=x-2y-x+2y=0
Khi x<2y thì A=x-2y+x-2y=2x-4y
b: \(B=x^2+\sqrt{x^4-8x^2+16}\)
\(=x^2+\left|x^2-4\right|\)
TH1: x>=2 hoặc x<=-2
B=x^2+x^2-4=2x^2-4
TH2: -2<=x<=2
B=x^2+4-x^2=4
c: \(C=2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)
\(=2x-1-\sqrt{\dfrac{\left(x-5\right)^2}{x-5}}=2x-1-\sqrt{x-5}\)
d: \(D=\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}=\sqrt{\dfrac{\left(x^2-2\right)^2}{x^2-2}}=\sqrt{x^2-2}\)
\(a.\sqrt{1-4a+4a^2}-2a=\sqrt{\left(1-2a\right)^2}-2a=\left|1-2a\right|-2a\)
*\(a>\dfrac{1}{2}\Rightarrow\left|1-2a\right|-2a=2a-1-2a=4a-1\)
* \(a\le\dfrac{1}{2}\Rightarrow\left|1-2a\right|-2a=1-2a-2a=1-4a\)
\(b.x-2y-\sqrt{x^2-4xy+4y^2}=x-2y-\sqrt{\left(x-2y\right)^2}=x-2y-\left|x-2y\right|\)
* \(x\ge2y\Rightarrow x-2y-\left|x-2y\right|=x-2y-x+2y=2x\)
* \(x< 2y\Rightarrow x-2y-\left|x-2y\right|=x-2y-2y+x=2x-4y\)
\(c.x^2+\sqrt{x^4-8x^2+16}=x^2+\sqrt{\left(x^2-4\right)^2}=x^2+\left|x^2-4\right|\)
* \(x^2-4\ge0\Rightarrow x^2+\left|x^2-4\right|=x^2+x^2-4=2x^2-4\)
* \(x^2-4< 0\Rightarrow x^2+\left|x^2-4\right|=x^2+4-x^2=4\)
\(d.2x-1-\dfrac{\sqrt{x^2-10x+25}}{x-5}=2x-1-\dfrac{\sqrt{\left(x-5\right)^2}}{x-5}=2x-1-\dfrac{\left|x-5\right|}{x-5}\)
* \(x\ge5\Rightarrow2x-1-\dfrac{\left|x-5\right|}{x-5}=2x-1-1=2x-2\)
* \(x< 5\Rightarrow2x-1-\dfrac{\left|x-5\right|}{x-5}=2x-1+1=2x\)
\(e.\dfrac{\sqrt{x^4-4x^2+4}}{x^2-2}=\dfrac{\sqrt{\left(x^2-2\right)^2}}{x^2-2}=\dfrac{\left|x^2-2\right|}{x^2-2}\)
* \(x^2\ge2\Rightarrow\dfrac{\left|x^2-2\right|}{x^2-2}=1\)
* \(x^2< 2\Rightarrow\dfrac{\left|x^2-2\right|}{x^2-2}=-1\)
\(f.\sqrt{\left(x-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}=\left|x-4\right|+\dfrac{x-4}{\sqrt{\left(x-4\right)^2}}=\left|x-4\right|+\dfrac{x-4}{\left|x-4\right|}\)
* \(x\ge4\Rightarrow\left|x-4\right|+\dfrac{x-4}{\left|x-4\right|}=x-4+\dfrac{x-4}{x-4}=x-5\)
* \(x< 4\Rightarrow\left|x-4\right|+\dfrac{x-4}{\left|x-4\right|}=4-x-1=5-x\)
a) \(\sqrt[]{1-4a+4a^2}\)
\(=\sqrt[]{\left(1-2a\right)^2}\)
\(=\left|1-2a\right|\)
\(=\left[{}\begin{matrix}1-2a\left(a\le\dfrac{1}{2}\right)\\2a-1\left(a>\dfrac{1}{2}\right)\end{matrix}\right.\)
b) \(x-2y-\sqrt[]{x^2-4xy+4y^2}\)
\(=x-2y-\sqrt[]{\left(x-2y\right)^2}\)
\(=x-2y-\left|x-2y\right|\)
\(=\left[{}\begin{matrix}x-2y-x+2y\left(x\ge2y\right)\\x-2y+x-2y\left(x< 2y\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}0\left(x\ge2y\right)\\2x-4y\left(x< 2y\right)\end{matrix}\right.\)
\(=\left[{}\begin{matrix}0\left(x\ge2y\right)\\2\left(x-2y\right)\left(x< 2y\right)\end{matrix}\right.\)