\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

\(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)

\(=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)

\(=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}\)

= 1

\(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)

\(=\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\times\sqrt{3+\sqrt{5}}\times\sqrt{2}\left(\sqrt{5}-1\right)\)

\(=\sqrt{9-5}\times\sqrt{6+2\sqrt{5}}\left(\sqrt{5}-1\right)\)

\(=2\sqrt{\left(\sqrt{5}+1\right)^2}\left(\sqrt{5}-1\right)\)

\(=2\left(5-1\right)\)

= 8

16 tháng 7 2017

a) \(A=\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)

\(=\sqrt{5}-\sqrt{3-\sqrt{\left(3-2\sqrt{5}\right)^2}}\)

\(=\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}\)

\(=\sqrt{5}-\sqrt{3-2\sqrt{5}+3}\)

\(=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5}-\sqrt{\left(1-\sqrt{5}\right)^2}\)

\(=\sqrt{5}-\left(\sqrt{5}-1\right)\)

\(=\sqrt{5}-\sqrt{5}+1\)

\(=1\)

b) \(B=\sqrt{3-\sqrt{5}}\cdot\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)

\(=\sqrt{3-\sqrt{5}}\left(3\sqrt{10}+\sqrt{50}-3\sqrt{2}-\sqrt{10}\right)\)

\(=\sqrt{3-\sqrt{5}}\left(3\sqrt{10}+5\sqrt{2}-3\sqrt{2}-\sqrt{10}\right)\)

\(=\sqrt{3-\sqrt{5}}\left(2\sqrt{10}+2\sqrt{2}\right)\)

\(=\sqrt{3-\sqrt{5}}\sqrt{\left(2\sqrt{10}+2\sqrt{2}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{5}\right)\left(2\sqrt{10}+2\sqrt{2}\right)^2}\)

\(=\sqrt{\left(3-\sqrt{5}\right)\left(4\cdot10+8\sqrt{20}+4\cdot2\right)}\)

\(=\sqrt{\left(3-\sqrt{5}\right)\left(40+16\sqrt{5}+8\right)}\)

\(=\sqrt{\left(3-\sqrt{5}\right)\left(48+16\sqrt{5}\right)}\)

\(=\sqrt{\left(3-\sqrt{5}\right)\cdot16\left(3+\sqrt{5}\right)}\)

\(=\sqrt{\left(9-5\right)\cdot16}\)

\(=\sqrt{4\cdot16}\)

\(=\sqrt{64}\)

\(=8\)

16 tháng 6 2017

a) \(\left(2\sqrt{3}+\sqrt{5}\right)\sqrt{3}-\sqrt{60}\) = \(6+\sqrt{15}-2\sqrt{15}\)

= \(6-\sqrt{15}\)

b) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\) = \(5\sqrt{10}+10-5\sqrt{10}\) = \(10\)

c) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\) = \(14-2\sqrt{21}-7+2\sqrt{21}\)

= \(7\)

d) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)

= \(33-3\sqrt{22}-11+3\sqrt{22}\) = \(22\)

23 tháng 4 2017

a)(2√3+√5)√3-√60
=6+√15-2√15
=6-√15

b)(5√2+2√5)√5-√250
=5√10+10-5√10
=10

c)(√28-√12-√7)√7+2√21
=14-2√21-7+2√21
=7

d)(√99-√18-√11)√11+3√22
=33-3√22-11+3√22
=22

15 tháng 7 2017

a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\sqrt{2}-\sqrt{5}=\sqrt{16}-6+\sqrt{20}-\sqrt{5}=4-6+2\sqrt{5}-\sqrt{5}=\sqrt{5}-2\)

b) \(0,2\sqrt{\left(-10\right)^3.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=0,2\left|-10\right|\sqrt{3}+2\left|\sqrt{3}-\sqrt{5}\right|=0,2.10.\sqrt{3}+2\left(\sqrt{5}-\sqrt{3}\right)=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)

c) \(\left(\dfrac{1}{2}\sqrt{\dfrac{1}{2}}-\dfrac{3}{2}\sqrt{2}+\dfrac{4}{5}\sqrt{200}\right):\dfrac{1}{8}=\left(\dfrac{1}{2}\sqrt{\dfrac{2}{4}}-\dfrac{3}{2}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\left(\dfrac{1}{4}\sqrt{2}-\dfrac{2}{3}\sqrt{2}+8\sqrt{2}\right):\dfrac{1}{8}=\dfrac{27}{4}\sqrt{2}.8=54\sqrt{2}\)

d) \(2\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt{2.\left(-3\right)^2}-5\sqrt{\left(-1\right)^4}=2\left(3-\sqrt{2}\right)+3\sqrt{2}-5=6-2\sqrt{2}+3\sqrt{2}-5=1+\sqrt{2}\)

11 tháng 10 2017

Phần a sai đề sửa đề

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-{12\sqrt{5}}}}}\)

=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{(2\sqrt{5}-3)^2 } } } \)

=\(\sqrt{5-\sqrt{3-2\sqrt{5}+3 }}\)

=\(\sqrt{\sqrt{5}-\sqrt{(\sqrt{5}-1)^2 } } \)

=\(\sqrt{\sqrt{5}-\sqrt{5}+1 } \)

=1

11 tháng 10 2017

B=\((\sqrt{4+\sqrt{15} }) \sqrt{2}(\sqrt{5}-\sqrt{3})(\sqrt{4-\sqrt{15} })({\sqrt{4+\sqrt{15} }) } \)

=(\((\sqrt{4+\sqrt{15} })\sqrt{2}(\sqrt{5}-\sqrt{3}) \)

=\((\sqrt{8+2\sqrt{15} })(\sqrt{5}-\sqrt{3}) \)

=\((\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3}) \)

=2

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

a)

\(A=\sqrt{26+15\sqrt{3}}=\sqrt{\frac{52+30\sqrt{3}}{2}}=\sqrt{\frac{27+25+2\sqrt{27.25}}{2}}\)

\(=\sqrt{\frac{(\sqrt{27}+\sqrt{25})^2}{2}}=\frac{\sqrt{27}+\sqrt{25}}{\sqrt{2}}=\frac{3\sqrt{3}+5}{\sqrt{2}}=\frac{3\sqrt{6}+5\sqrt{2}}{2}\)

b)

\(B\sqrt{2}=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}-2\)

\(=\sqrt{7+1+2\sqrt{7}}-\sqrt{7+1-2\sqrt{7}}-2\)

\(=\sqrt{(\sqrt{7}+1)^2}-\sqrt{(\sqrt{7}-1)^2}-2=\sqrt{7}+1-(\sqrt{7}-1)-2=0\)

\(\Rightarrow B=0\)

c)

\(C=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{3+5+2\sqrt{3.5}}\)

\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{5}+\sqrt{3})^2}=(\sqrt{5}-\sqrt{3})-(\sqrt{5}+\sqrt{3})=-2\sqrt{3}\)

AH
Akai Haruma
Giáo viên
16 tháng 8 2019

d)

\(D=(\sqrt{6}-2)(5+2\sqrt{6})\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(2+3+2\sqrt{2.3})\sqrt{2+3-2\sqrt{2.3}}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})^2\sqrt{(\sqrt{3}-\sqrt{2})^2}\)

\(=\sqrt{2}(\sqrt{3}-\sqrt{2})^2(\sqrt{3}+\sqrt{2})^2=\sqrt{2}[(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})]^2\)

\(=\sqrt{2}.1^2=\sqrt{2}\)

e)

\(E=(\sqrt{10}-\sqrt{2})\sqrt{3+\sqrt{5}}=(\sqrt{5}-1).\sqrt{2}.\sqrt{3+\sqrt{5}}\)

\(=(\sqrt{5}-1)\sqrt{6+2\sqrt{5}}=(\sqrt{5}-1)\sqrt{5+1+2\sqrt{5.1}}\)

\(=(\sqrt{5}-1)\sqrt{(\sqrt{5}+1)^2}=(\sqrt{5}-1)(\sqrt{5}+1)=4\)

f)

\(F=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20+9-2\sqrt{20.9}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{(\sqrt{20}-3)^2}}}=\sqrt{\sqrt{5}-\sqrt{3-(\sqrt{20}-3)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}=\sqrt{\sqrt{5}-\sqrt{5+1-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{(\sqrt{5}-1)^2}}=\sqrt{\sqrt{5}-(\sqrt{5}-1)}=\sqrt{1}=1\)

23 tháng 8 2020

\(A=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{3+2\sqrt{2}}\)

\(A=\sqrt{2}-1-\sqrt{\left(\sqrt{2}+1\right)^2}\)

\(A=\sqrt{2}-1-\sqrt{2}-1=-2\)

B = \(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)

\(B=\sqrt{6+2\sqrt{5}-\sqrt{29-6\sqrt{20}}}\)

B = \(\sqrt{6+2\sqrt{5}-\sqrt{\left(3-\sqrt{20}\right)^2}}\)

\(B=\sqrt{6+2\sqrt{5}-2\sqrt{5}+3}\)

\(B=\sqrt{9}=3\)

23 tháng 8 2020

giúp mk c với d luôn đc ko