K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2021

trả lời :

a) 

\(M=\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}\)

\(M=\dfrac{x-\sqrt{2}}{x+\sqrt{2}}\)

b)\(N=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}\)

\(N=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)

^HT^

11 tháng 10 2021

a, Ta có :

    \(M=\frac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}\)

          \(=\frac{x-\sqrt{2}}{x+\sqrt{2}}\)( với x khác cộng trừ căn 2)

b, Ta có:

      \(N=\frac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\frac{1}{x+\sqrt{5}}\)

         ( với x khác trừ căn 5)

Chúc học tốt + k mình nha

                  

30 tháng 9 2021

\(A=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}=\dfrac{x-\sqrt{2}}{x+\sqrt{2}}\)

\(B=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)

16 tháng 8 2018

\(M=\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}\)

\(M=\dfrac{x-\sqrt{2}}{x+\sqrt{2}}\)

hi vọng bạn hiểu

16 tháng 8 2018

b, \(N=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}\)

chú ý dưới mẫu nhé! khá hay đẫy, nếu ghép lại là thành dạng bình phương đấy, mời bạn xem nhé!

\(N=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)

thấy chưa, đơn giản quá phải k

Bài 1:

Thay x=9 vào biểu thức \(A=\frac{2\sqrt{x}+1}{\sqrt{x}+2}\), ta được:

\(\frac{2\cdot\sqrt{9}+1}{\sqrt{9}+2}=\frac{2\cdot3+1}{3+2}=\frac{7}{5}\)

Vậy: \(\frac{7}{5}\) là giá trị của biểu thức \(A=\frac{2\sqrt{x}+1}{\sqrt{x}+2}\) tại x=9

Bài 2:

a) Ta có: \(B=\left(\frac{x+14\sqrt{x}-5}{x-25}+\frac{\sqrt{x}}{\sqrt{x}+5}\right):\frac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(=\left(\frac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\frac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right)\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(=\frac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(=\frac{2x+10\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}\cdot\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}-1}{\sqrt{x}+2}\)

1) Ta có: \(A=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)

\(=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-4\sqrt{x}+\sqrt{x}-2}\right)\cdot\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\left(\frac{2\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}-7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\cdot\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\frac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\frac{2\sqrt{x}+3}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)

\(=\frac{5\sqrt{x}}{2\sqrt{x}+1}\)

16 tháng 6 2019

cho hỏi là mẫu biểu thức A là\(\sqrt{x}-3\) hay\(\sqrt{x-3}\)

16 tháng 6 2019

\(\sqrt{x}-3\)mình ghi nhầm

2 tháng 5 2017

a) \(\dfrac{x^2-5}{x+\sqrt{5}}\)(với x khác -\(\sqrt{5}\)) =\(\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}\) = x-\(\sqrt{5}\) vậy \(\dfrac{x^2-5}{x+\sqrt{5}}\) = x-\(\sqrt{5}\) với x khác -\(\sqrt{5}\) b) \(\dfrac{x^2+2\sqrt{2}x+2}{x^2-2}\) ( với x khác +-\(\sqrt{2}\) ) = \(\dfrac{\left(x+\sqrt{2}\right)^2}{\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)}\) =\(\dfrac{x+\sqrt{2}}{x-\sqrt{2}}\) vậy \(\dfrac{x^2+2\sqrt{2}x+2}{x^2-2}\) =\(\dfrac{x+\sqrt{2}}{x-\sqrt{2}}\) với x khác +-\(\sqrt{2}\)

12 tháng 12 2019

a)\(M=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}.\left(\sqrt{x}+1\right)\)

\(=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)

b)\(\frac{1}{M}=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)

Ta có: \(\sqrt{x}\ge0,\forall x\ge0\)

\(\Leftrightarrow\sqrt{x}+1\ge1\)

\(\Leftrightarrow\frac{1}{\sqrt{x}+1}\le1\)

\(\Leftrightarrow\frac{3}{\sqrt{x}+1}\le3\)

\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}\ge-3\)

\(\Leftrightarrow1-\frac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi x=0

Vậy \(Min_{\frac{1}{M}}=-2\) khi x=0

13 tháng 12 2019

Thankssss!!