Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}=\dfrac{x-\sqrt{2}}{x+\sqrt{2}}\)
\(B=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)
\(M=\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}\)
\(M=\dfrac{x-\sqrt{2}}{x+\sqrt{2}}\)
hi vọng bạn hiểu
b, \(N=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}\)
chú ý dưới mẫu nhé! khá hay đẫy, nếu ghép lại là thành dạng bình phương đấy, mời bạn xem nhé!
\(N=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)
thấy chưa, đơn giản quá phải k
Bài 1:
Thay x=9 vào biểu thức \(A=\frac{2\sqrt{x}+1}{\sqrt{x}+2}\), ta được:
\(\frac{2\cdot\sqrt{9}+1}{\sqrt{9}+2}=\frac{2\cdot3+1}{3+2}=\frac{7}{5}\)
Vậy: \(\frac{7}{5}\) là giá trị của biểu thức \(A=\frac{2\sqrt{x}+1}{\sqrt{x}+2}\) tại x=9
Bài 2:
a) Ta có: \(B=\left(\frac{x+14\sqrt{x}-5}{x-25}+\frac{\sqrt{x}}{\sqrt{x}+5}\right):\frac{\sqrt{x}+2}{\sqrt{x}-5}\)
\(=\left(\frac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\frac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right)\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(=\frac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(=\frac{2x+10\sqrt{x}-\sqrt{x}-5}{\sqrt{x}+5}\cdot\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}-1}{\sqrt{x}+2}\)
1) Ta có: \(A=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-4\sqrt{x}+\sqrt{x}-2}\right)\cdot\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\left(\frac{2\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\frac{5\sqrt{x}-7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\cdot\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\frac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\frac{2\sqrt{x}+3}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\frac{5\sqrt{x}}{2\sqrt{x}+1}\)
cho hỏi là mẫu biểu thức A là\(\sqrt{x}-3\) hay\(\sqrt{x-3}\)
a) \(\dfrac{x^2-5}{x+\sqrt{5}}\)(với x khác -\(\sqrt{5}\)) =\(\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}\) = x-\(\sqrt{5}\) vậy \(\dfrac{x^2-5}{x+\sqrt{5}}\) = x-\(\sqrt{5}\) với x khác -\(\sqrt{5}\) b) \(\dfrac{x^2+2\sqrt{2}x+2}{x^2-2}\) ( với x khác +-\(\sqrt{2}\) ) = \(\dfrac{\left(x+\sqrt{2}\right)^2}{\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)}\) =\(\dfrac{x+\sqrt{2}}{x-\sqrt{2}}\) vậy \(\dfrac{x^2+2\sqrt{2}x+2}{x^2-2}\) =\(\dfrac{x+\sqrt{2}}{x-\sqrt{2}}\) với x khác +-\(\sqrt{2}\)
a)\(M=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}.\left(\sqrt{x}+1\right)\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-2}\)
b)\(\frac{1}{M}=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
Ta có: \(\sqrt{x}\ge0,\forall x\ge0\)
\(\Leftrightarrow\sqrt{x}+1\ge1\)
\(\Leftrightarrow\frac{1}{\sqrt{x}+1}\le1\)
\(\Leftrightarrow\frac{3}{\sqrt{x}+1}\le3\)
\(\Leftrightarrow-\frac{3}{\sqrt{x}+1}\ge-3\)
\(\Leftrightarrow1-\frac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi x=0
Vậy \(Min_{\frac{1}{M}}=-2\) khi x=0
trả lời :
a)
\(M=\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}\)
\(M=\dfrac{x-\sqrt{2}}{x+\sqrt{2}}\)
b)\(N=\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}\)
\(N=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)
^HT^
a, Ta có :
\(M=\frac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}\)
\(=\frac{x-\sqrt{2}}{x+\sqrt{2}}\)( với x khác cộng trừ căn 2)
b, Ta có:
\(N=\frac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\frac{1}{x+\sqrt{5}}\)
( với x khác trừ căn 5)
Chúc học tốt + k mình nha