K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

a) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}=7\sqrt{2}-6\sqrt{2}+\sqrt{2}=2\sqrt{2}\)

b) \(\left(2\sqrt{3}+\sqrt{5}\right).\sqrt{3}-\sqrt{60}=6+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)

c) \(\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)=\left(\sqrt{x}\right)^3+8\)

d) \(\left(\sqrt{x}-\sqrt{y}\right)\left(x+y+\sqrt{xy}\right)=\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3\)

28 tháng 9 2018

cho mình hỏi phần b làm sao để ra đc như vậy ạ

2 tháng 11 2023

a) \(2\sqrt{32}+3\sqrt{72}-7\sqrt{50}+\sqrt{2}\)

\(=2\cdot4\sqrt{2}+3\cdot6\sqrt{2}-7\cdot5\sqrt{2}+\sqrt{2}\)

\(=8\sqrt{2}+18\sqrt{2}-35\sqrt{2}+\sqrt{2}\)

\(=-8\sqrt{2}\) 

b) \(\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left|3-\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)

\(=3-\sqrt{3}+\sqrt{3}-2\)

\(=1\)

c) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)

\(=\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-3+\sqrt{2}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)

\(=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

d) \(x-4+\sqrt{16-8x+x^2}\left(x>4\right)\)

\(=x-4+\sqrt{x^2-8x+16}\)

\(=x-4+\sqrt{\left(x-4\right)^2}\)

\(=x-4+\left|x-4\right|\)

\(=x-4+x-4\)

\(=2x-8\) 

e) \(\dfrac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}\left(a< b\right)\)

\(=\dfrac{1}{a-b}\sqrt{\left[a^2\left(a-b\right)\right]^2}\)

\(=\dfrac{1}{a-b}\left|a^2\left(a-b\right)\right|\)

\(=\dfrac{-a^2\left(a-b\right)}{a-b}\)

\(=-a^2\)

16 tháng 6 2023

\(A=3\left(x+2\sqrt{x}\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=3x+6\sqrt{x}-\left(x-1\right)\)

\(=3x+6\sqrt{x}-x+1\)

\(=2x+6\sqrt{x}+1\)

\(B=\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-2\left(\sqrt{x}-1\right)^2\)

\(=x+3\sqrt{x}+\sqrt{x}+3-2\left(x-2\sqrt{x}+1\right)\)

\(=x+4\sqrt{x}+3-2x+4\sqrt{x}-2\)

\(=-x+8\sqrt{x}+1\)

\(C=3x-3\sqrt{x}-2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(=3x-3\sqrt{x}-2+\left(\sqrt{x^2}-1\right)\)

\(=3x-3\sqrt{x}-2+x-1\)

\(=4x-3\sqrt{x}-3\)

\(D=\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)\)

\(=x-9-\left(2x-3\sqrt{x}-2\right)\)

\(=x-9-2x+3\sqrt{x}+2\)

\(=-x+3\sqrt{x}-7\)

\(E=\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)-2\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\)

\(=\sqrt{x^2}-2^2-2\left(2x+4\sqrt{x}-\sqrt{x}-2\right)\)

\(=x-4-2\left(2x+3\sqrt{x}-2\right)\)

\(=x-4-4x-6\sqrt{x}+4\)

\(=-3-6\sqrt{x}\)

25 tháng 6 2017

a)\(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)=1-\sqrt{x^3}\)

b) \(\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)=\sqrt{x^3}+8\)

c)\(\left(\sqrt{x}-\sqrt{y}\right)\left(x+y+\sqrt{xy}\right)=\sqrt{x^3}-\sqrt{y^3}\)

d)\(\left(x+\sqrt{y}\right)\left(x^2+y-x\sqrt{y}\right)=x^3+\sqrt{y^3}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

1. ĐKXĐ: $x>0; x\neq 9$

\(A=\frac{\sqrt{x}+3+\sqrt{x}-3}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}.\frac{\sqrt{x}-3}{\sqrt{x}}=\frac{2}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

2. ĐKXĐ: $x\geq 0; x\neq 4$

\(B=\left[\frac{\sqrt{x}(\sqrt{x}+2)+\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)}+\frac{6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}\right](\sqrt{x}+2)\)

\(=\frac{x+3\sqrt{x}-2+6-7\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)}.(\sqrt{x}+2)=\frac{x-4\sqrt{x}+4}{\sqrt{x}-2}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}-2}=\sqrt{x}-2\)

12 tháng 10 2022

a: \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{x-1}=\dfrac{-2\left(\sqrt{x}-1\right)}{x-1}=\dfrac{-2}{\sqrt{x}+1}\)

b: \(=\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}:\left(\dfrac{x+y+2xy+1-xy}{1-xy}\right)\)

\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{x+y+xy+1}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)

c: \(=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải:

a) ĐK: $x\geq 0; y\geq 0; x\neq y$

\(A=\left[\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}-\sqrt{y}}-\frac{(\sqrt{x}-\sqrt{y})(x+\sqrt{xy}+y)}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}\right]:\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)

\(=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right).\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)

\(=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

b) \(1-A=\frac{(\sqrt{x}-\sqrt{y})^2}{x-\sqrt{xy}+y}>0\) với mọi $x\neq y; x,y\geq 0$

$\Rightarrow A< 1$