K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

a. \(\sqrt{\dfrac{63y^3}{7y}}\)=\(\sqrt{9y^2}\)=3y

b.\(\sqrt{\dfrac{48x^3}{3x^5}}\)=\(\sqrt{16\cdot\dfrac{1}{X^2}}\)= \(\sqrt{16}\cdot\sqrt{\dfrac{1}{X^2}}\)=\(4\cdot\dfrac{1}{X}=\dfrac{4}{X}\)

c.\(\sqrt{\dfrac{45mn^2}{20m}}=\sqrt{\dfrac{9n^2}{4}}=\dfrac{\sqrt{9n^2}}{\sqrt{4}}=\dfrac{3n}{2}\)

d. \(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{2\sqrt{2}a}\)

19 tháng 9 2017

a) \(\dfrac{\sqrt{63y^3}}{\sqrt{7y}}=\sqrt{\dfrac{63y^3}{7y}}=\sqrt{9y^2}=3y\)

b) \(\dfrac{\sqrt{48x^3}}{\sqrt{3x^5}}=\sqrt{\dfrac{48x^3}{3x^5}}=\sqrt{\dfrac{16}{x^2}}=\dfrac{4}{x}\)

c) \(\dfrac{\sqrt{45mn^2}}{\sqrt{20m}}=\sqrt{\dfrac{45mn^2}{20m}}=\sqrt{\dfrac{9n^2}{4}}=\dfrac{3n}{2}\)

d) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{2\left|a\right|\sqrt{2}}=\dfrac{-1}{2a\sqrt{2}}\)

27 tháng 8 2021

a) \(\sqrt{4\left(a-3\right)^2}=2\left(a-3\right)=2a-6\)

b) \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)

c) \(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{\sqrt{8}\left|a\right|}=\dfrac{1}{-\sqrt{8}a}=\dfrac{-\sqrt{8}}{8a}\)

a: \(\sqrt{4\left(a-3\right)^2}=2\cdot\left(a-3\right)=2a-6\)

b: \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)

c: \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\sqrt{\dfrac{2}{16a^2}}=-\dfrac{\sqrt{2}}{4a}\)

 

7 tháng 6 2017

a) \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}\)

\(=\dfrac{4a^2b^3}{8\sqrt{2}a^3b^3}\)

\(=\dfrac{1}{2\sqrt{2}a}\)

\(=\dfrac{\sqrt{2}}{4a}\)

b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

chịu đấy :v

c) \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{3-x}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{x-2}{-\left(x-3\right)}+\dfrac{x^2-1}{x-3}\)

\(=-\dfrac{x-2}{x-3}+\dfrac{x^2-1}{x-3}\)

\(=\dfrac{-\left(x-2\right)+x^2-1}{x-3}\)

\(=\dfrac{-x+1+x^2}{x-3}\)

d) \(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1^2\right)}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(x-1\right)^2}\)

\(=\dfrac{1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y-2\sqrt{y}+1}}{x-1}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{\left(\sqrt{y}-1\right)\left(x-1\right)}\)

\(=\dfrac{\sqrt{y-2\sqrt{y}+1}}{x\sqrt{y}-\sqrt{y}-x+1}\)

e) \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\dfrac{\sqrt{x^2\cdot\left(x+2\right)}}{\sqrt{x+2}}\)

\(=4x-2\sqrt{2}+\sqrt{x^2}\)

\(=4x-2\sqrt{x}+x\)

\(=5x-2\sqrt{2}\)

8 tháng 6 2017

bạn ơi phần c mình sai đề bài.. bạn giúp mk giải lại đc k \(\sqrt{\dfrac{\left(x-2\right)^4}{\left(3-x\right)^2}}+\dfrac{x^2-1}{x-3}\)

16 tháng 8 2016

a)\(\frac{\sqrt{63y^3}}{\sqrt{7}y}=\frac{\sqrt{7\cdot3^2\cdot y^2\cdot y}}{\sqrt{7}y}=\frac{\sqrt{7}\cdot\sqrt{3^2}\cdot\sqrt{y^2}\cdot\sqrt{y}}{\sqrt{7}y}=\frac{\sqrt{7}\cdot3\cdot y\cdot\sqrt{y}}{\sqrt{7}y}=3\sqrt{y}\)

b)\(\frac{\sqrt{48x^3}}{\sqrt{3x^5}}=\frac{\sqrt{4^2\cdot3\cdot x^2\cdot x}}{\sqrt{3\cdot x^2\cdot x^3}}=\frac{\sqrt{4^2}\cdot\sqrt{3}\cdot\sqrt{x^3}}{\sqrt{3}\cdot\sqrt{x^2}\cdot\sqrt{x^3}}=\frac{4}{x}\)

c)\(\frac{\sqrt{45mn^2}}{\sqrt{20m}}=\frac{\sqrt{5\cdot3^2\cdot m\cdot n^2}}{\sqrt{5\cdot2^2\cdot m}}=\frac{\sqrt{5}\cdot\sqrt{3^2}\cdot\sqrt{m}\cdot\sqrt{n^2}}{\sqrt{5}\cdot\sqrt{2^2}\cdot\sqrt{m}}=\frac{3\left|n\right|}{2}\)

d)\(\frac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\frac{\sqrt{4^2\cdot a^2\cdot a^2\cdot b^2\cdot b^2\cdot b^2}}{\sqrt{4^2\cdot8\cdot a^2\cdot a^2\cdot a^2\cdot b^2\cdot b^2\cdot b^2}}=\frac{\sqrt{4^2}\cdot\sqrt{a^2}\cdot\sqrt{a^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}}{\sqrt{4^2}\cdot\sqrt{8}\cdot\sqrt{a^2}\cdot\sqrt{a^2}\cdot\sqrt{a^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}\cdot\sqrt{b^2}}=\frac{4\cdot a^2\cdot b^3}{4\cdot\sqrt{8}\cdot\left|a\right|^3\cdot b^3}=\frac{a^2}{\sqrt{8}\left|a\right|^3}\)

 

 

\(=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=3-1=2\)

b: \(=\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{2}{\sqrt{x}+1}=\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)

5 tháng 2 2022

a, \(=\left(\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+1\right)\left(\sqrt{3}-1\right)=\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)=2\)

b, với x > 0 

\(=\left(\dfrac{\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\left(\dfrac{2}{\sqrt{x+1}}\right)\)

\(=-\dfrac{-4}{\sqrt{x}\left(\sqrt{x}+2\right)\sqrt{x+1}}=\dfrac{4}{\left(\sqrt{x}+2\right)\sqrt{x^2+x}}\)

9 tháng 7 2018

a) \(\dfrac{\sqrt{63y^3}}{\sqrt{7y}}=\sqrt{\dfrac{63y^3}{7y}}=\sqrt{9y^2}=\left|3y\right|=3y\) (vì y > 0)

b) \(\dfrac{\sqrt{68a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{68a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{17}{32a^2}}\)

Ta có: \(A=\left(\dfrac{x}{x+3\sqrt{x}}+\dfrac{1}{\sqrt{x}+3}\right):\left(1-\dfrac{2}{\sqrt{x}}+\dfrac{6}{x+3\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}:\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{x+\sqrt{x}}\)

\(=1\)

1 tháng 7 2021

\(A=\left(\dfrac{x}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}-\dfrac{2\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}+\dfrac{6}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\\ A=\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}:\dfrac{x+3\sqrt{x}-2\sqrt{x}-6+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\\ A=\dfrac{x+\sqrt{x}}{x+\sqrt{x}}=1\)

Bài 1: Rút gọn các biểu thức sau:a) (\(\left(\sqrt{12}-\sqrt{75}+\sqrt{48}\right):\sqrt{3}\)b) \(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{3-1}}\)c) \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)\) với 0 \(\le\) a \(\ne\)1Bài 2: a) Vẽ đồ thị (P) của hàm số y = ax2b) Chứng minh rằng đường thẳng (d) y = kx +1 luôn cắt đồ thị (P) tại hai điểm phân biệt với mọi kBài 3a) Giải hệ phương...
Đọc tiếp

Bài 1: Rút gọn các biểu thức sau:

a) (\(\left(\sqrt{12}-\sqrt{75}+\sqrt{48}\right):\sqrt{3}\)

b) \(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{3-1}}\)

c) \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)\) với 0 \(\le\) a \(\ne\)1

Bài 2: 

a) Vẽ đồ thị (P) của hàm số y = ax2

b) Chứng minh rằng đường thẳng (d) y = kx +1 luôn cắt đồ thị (P) tại hai điểm phân biệt với mọi k

Bài 3

a) Giải hệ phương trình: \(\left\{{}\begin{matrix}2x-2y=-2\\\dfrac{1}{2}x+\dfrac{2}{3}y=5\end{matrix}\right.\)

b) Giải phương trình: x4 +x2 -2 = 0

c) Cho phương trình: x2 - 2(m-1)x + 2m -4 =0 có hai nghiệm x1x2. Tìm giá trị nhỏ nhất của biểu thức A = x11x22

Bài 4: Hai người cùng làm chung một công việc trong \(\dfrac{12}{5}\) giờ thì xong. Nếu mỗi người làm một mình thì người thứ nhất hoàn thành công việc trong ít hơn người thứ hai là 2 giờ. Hỏi nếu làm một mình thì mỗi người phải làm trong bao nhiêu thời gian để xong công việc?

Bài 5: Cho đường tròn(O;R) từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d) lấy điểm M bất kì ( M khác A) kẻ các tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC vuông góc MB, BD vuông góc MA, gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB 

a) Chứng minh tứ giác AMBO nội tiếp 

b) Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn 

c) Chứng minh OI.OM = R2; OI. IM = IA2

d) Chứng ming OAHB là hình thoi 

e) Chứng minh ba điểm O,H,M thẳng hàng 

 

 

0