Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
=>\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
=>\(2A+A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2+2^{100}-2^{99}+...+2^2-2\)
=>\(3A=2^{101}-2\)
=>\(A=\dfrac{2^{101}-2}{3}\)
b: Sửa đề: \(A=\dfrac{2\cdot8^4\cdot27^2+4\cdot6^9}{2^7\cdot6^7+2^7\cdot40\cdot9^4}\)
\(A=\dfrac{2\cdot2^{12}\cdot3^6+2^2\cdot2^9\cdot3^9}{2^7\cdot2^7\cdot3^7+2^7\cdot2^3\cdot5\cdot3^8}\)
\(=\dfrac{2^{11}\cdot3^6\left(2^3+3^3\right)}{2^{10}\cdot3^7\left(2^4+5\cdot3\right)}\)
\(=\dfrac{2}{3}\cdot\dfrac{4+27}{16+15}=\dfrac{2}{3}\)
c: \(B=\dfrac{4^5\cdot9^4-2\cdot6^4}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^4\cdot3^4}{2^{10}\cdot3^8+2^8\cdot2^2\cdot5\cdot3^8}\)
\(=\dfrac{2^5\cdot3^4\left(2^5\cdot3^4-1\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{1}{2^5\cdot3^4}\cdot\dfrac{32\cdot81-1}{6}\)
\(=\dfrac{2591}{2^6\cdot3^5}\)
a.
\(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)-x^4+y^4=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4-x^4+y^4\)
\(=\left(x^4-x^4\right)+\left(y^4-y^4\right)+\left(x^3y-x^3y\right)+\left(xy^3-xy^3\right)+\left(x^2y^2-x^2y^2\right)=0\)
b.
\(\left(2-x\right)\left(1+2x\right)+\left(1+x\right)-\left(x^4+x^3-5x^2-5\right)=2+4x-x-2x^2+1+x-x^4-x^3+5x^2+5\)
\(=-x^4-x^3+\left(5x^2-2x^2\right)+\left(4x-x+x\right)+\left(1+2+5\right)=-x^4-x^3+3x^2+4x+8\)
c.
\(\left(x^2-7\right)\left(x+2\right)-\left(2x-1\right)\left(x-14\right)+x\left(x^2-2x-22\right)+35=x^3+2x^2-7x-14-2x^2+28x+x-14+x^3-2x^2-22x+35\)
\(=\left(x^3+x^3\right)+\left(2x^2-2x^2\right)+\left(28x-22x-7x+x\right)+\left(35-14\right)=2x^3+21\)
Ta nhận thấy mẫu của biểu thức trên là:
x26+x24+x22+...+x2+1=(x26+x22+...+x2)+(x24+x20+...+x4+1)
=x2(x24+x20+...+x16+...+1)+(x24+x20+...+x4+1)
=(x24+x20+...+1)(x2+1)
Như vậy\(\frac{x^{24}+x^{20}+x^{16}+...+1}{\left(x^{24}+x^{20}+...+1\right)\left(x^2+1\right)}\)=\(\frac{1}{x^2+1}\)
a) \(A=1+2+2^2+2^3+...+2^{99}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)
b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)
\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)
\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5
c) \(A=1+2+2^2+...+2^{99}\)
\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)
\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1
=> A không chia hết cho 7
Bài 1:
a: \(\left|x-\dfrac{1}{2}\right|+\dfrac{1}{2}=x\)
=>\(\left|x-\dfrac{1}{2}\right|=x-\dfrac{1}{2}\)
=>\(x-\dfrac{1}{2}>=0\)
=>\(x>=\dfrac{1}{2}\)
b: \(\left|1-3x\right|+1=3x\)
=>\(\left|1-3x\right|=3x-1\)
=>\(1-3x< =0\)
=>3x-1>=0
=>3x>=1
=>\(x>=\dfrac{1}{3}\)
Bài 2:
a: \(C=\left|5-x\right|+x=\left|x-5\right|+x\)
TH1: x>=5
\(C=x-5+x=2x-5\)
TH2: x<5
C=5-x+x=5
b: D=|2x-1|-x
TH1: x>=1/2
\(D=2x-1-x=x-1\)
TH2: \(x< \dfrac{1}{2}\)
D=1-2x-x=1-3x
\(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2C-C=1-\frac{1}{2^{100}}\)
\(\Rightarrow C=1-\frac{1}{2^{99}}\)
\(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2C-C=1-\frac{1}{2^{100}}\Rightarrow C=1-\frac{1}{2^{100}}\)
#Harry#Kasama#