Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-y)3+(x+y)3+(y-x)3-3xy(x+y)
=x3-3x2y+3xy2-y3+x3+3x2y+3xy2+y3+y3-3y2x+3yx2-x3-3x2y-3xy2
=x3+x3-x3-3x2y+3x2y-3yx2-3x2y+3xy2+3xy2-3y2x-3xy2-y3+y3+y3
=x3+y3
\(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}:\dfrac{4xy}{y^2-x^2}\) \(\left(x,y\ne0;x\ne\pm y\right)\)
\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{y^2-x^2}.\dfrac{y^2-x^2}{4xy}\)
\(=\dfrac{1}{x^2+2xy+y^2}+\dfrac{1}{4xy}\)
\(=\dfrac{6xy+x^2+y^2}{4xy\left(x+y\right)^2}\)
Ta có: \(\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}:\dfrac{4xy}{y^2-x^2}\)
\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)\left(x-y\right)}{4xy}\)
\(=\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{4xy}\)
\(=\dfrac{4xy}{4xy\left(x+y\right)^2}+\dfrac{x^2+2xy+y^2}{4xy\left(x+y\right)^2}\)
\(=\dfrac{x^2+6xy+y^2}{4xy\left(x+y\right)^2}\)
\(a,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=2\left(x^2-y^2\right)+x^2+2xy+y^2+x^2-2xy+y^2\)
\(=2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2\)
\(=4x^2\)
a,2(x-y)(x+y)+(x+y)2+(x-y)2
=2(x2-y2)+x2+2xy+y2+x2-2xy+y2
=4x2
b,=x2
\(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)\)
\(=3.\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-x^2+y^2\)
\(=3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\)
\(=2y^2-10xy\)
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^{n-1}.x+x^{n-1}.y-y.x^{n-1}-y.y^{n-1}\)
\(=x^{n-1+1}+x^{n-1}y-x^{n-1}y-y^{n-1+1}=x^n-y^n\)
Trả lời
\(\left(x+y\right)^2+\left(x+y\right)^2\)
\(=x^2+2xy+y^2+x^2+2xy+y^2\)
\(=2x^2+4xy+2y^2\)
\(=2.\left(x+y\right)^2\)
Study well
\(\left(x+y\right)^2+\left(x+y\right)^2=2\left(x+y\right)^2\)giống như \(a^2+a^2=2a^2\)thôi bạn nhé