Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x+y−z=a;x−y+z=b;−x+y+z=cx+y−z=a;x−y+z=b;−x+y+z=c thì a + b + c = x + y + z
A=(a+b+c)3−a3−b3−c3A=(a+b+c)3−a3−b3−c3
=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)
=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]
=(b+c)(3a2+3ab+3bc+3ca)=(b+c)(3a2+3ab+3bc+3ca)
=(b+c)(3a(a+b)+3c(a+b))=3(a+b)(b+c)(c+a)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Bài 2:
a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
hay \(x=\dfrac{2}{7}\)
b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Bài 1:
a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)
\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)
\(=xy\)
=1
b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)
\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)
\(=x^2-y^2\)
\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)
\(a,P=x^2-16-x^2+8x-16=8x-32\\ b,=3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\\ =2y^2-10xy=2\cdot9-10\left(-3\right)\cdot2=78\)
A=(x+y)^3+3(x+y)^2*z+3(x+y)*z^2+z^3-(x+y)^3+3(x+y)^2*z^2-3(x+y)*z^2+z^3-(x-y+z)^3+(x-y-z)^3
=6(x+y)^2+2z^3+(x-y)^3-3(x-y)^2*z+3(x-y)*z^2-z^3-(x-y)^3-3*(x-y)^2*z-3*(x-y)*z^2-z^3
=6(x+y)^2+2z^3-6(x-y)^2-2z^3=0
Ta có: \(A=\left(x-y-1\right)^3-\left(x-y+1\right)^3+6\left(x-y\right)^2\)
\(=\left(x-y-1-x+y-1\right)\left[\left(x-y-1\right)^2+\left(x-y-1\right)\left(x-y+1\right)+\left(x-y+1\right)^2\right]+6\left(x-y\right)^2\)
\(=-2\cdot\left[3\left(x-y\right)^2+1\right]+6\left(x-y\right)^2\)
\(=-6\left(x-y\right)^2+6\left(x-y\right)^2-2\)
=-2
(x-y)3+(x+y)3+(y-x)3-3xy(x+y)
=x3-3x2y+3xy2-y3+x3+3x2y+3xy2+y3+y3-3y2x+3yx2-x3-3x2y-3xy2
=x3+x3-x3-3x2y+3x2y-3yx2-3x2y+3xy2+3xy2-3y2x-3xy2-y3+y3+y3
=x3+y3