Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge0\)
\(\frac{1}{\sqrt{x}+1}-\frac{3}{x\sqrt{x}+1}+\frac{2}{x-\sqrt{x}+1}\)
\(=\frac{1}{\sqrt{x}+1}-\frac{3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}+\frac{2}{x-\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}+1-3+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
P=\(\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\left(\frac{\sqrt{x}-3}{2\sqrt{x}-x}\right)=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{4-x}\right).\frac{2\sqrt{x}-x}{\sqrt{x}-3}=\left[\frac{\left(2+\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}-\frac{\left(2-\sqrt{x}\right)^2}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}+\frac{4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right].\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}=\frac{\left(4x+8\sqrt{x}\right).\sqrt{x}.\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)\left(\sqrt{x}-3\right)}=\frac{4x\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)\left(\sqrt{x}-3\right)}=\frac{4x}{\sqrt{x}-3}\)
M= \(\sqrt{2}+1-\) \(\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}+1-\sqrt{2}+1=2\)
N=\(\sqrt{1+2\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{1+2\left(\sqrt{2}+1\right)}=\) \(\sqrt{1+2\sqrt{2}+2}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
P= \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}+\frac{2\sqrt{x}.\sqrt{x}}{\sqrt{x}}\) (dk \(x>0\))
=\(\sqrt{x}+1+2\sqrt{x}=3\sqrt{x}+1\)
Q= \(\sqrt{\left(\sqrt{x}+1\right)^2}+\sqrt{\left(\sqrt{x}-1\right)^2}\) (dk \(x\ge0\) )
=\(\left|\sqrt{x}+1\right|+\left|\sqrt{x}-1\right|\)
th1 \(\sqrt{x}\ge1\Leftrightarrow x\ge1\) Q=\(\sqrt{x}+1+\sqrt{x}-1=2\sqrt{x}\)
th2 \(0\le x< 1\) Q=\(\sqrt{x}+1+1-\sqrt{x}=2\)
a) \(M=\sqrt{2}+1-\sqrt{1,5.2-2.\sqrt{2}}\)
\(=\sqrt{2}+1-\sqrt{2.\left(1,5-\sqrt{2}\right)}\)\(=\sqrt{2}+1-\sqrt{2}.\sqrt{1,5-\sqrt{2}}\)
\(=\sqrt{2}.\left(1+1,5-\sqrt{2}\right)+1=\sqrt{2}.\left(2,5-\sqrt{2}\right)+1\)
\(=\sqrt{2}.2,5-2+1=\sqrt{2}.2,5-1\)
P/s: Theo em thì em nghĩ là đúng '-' Khoảng 90% :)
a/
\(=\left(\frac{1}{\sqrt{x}+3}+\frac{3}{\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right)\)
\(=\left(\frac{x-3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}\right)\)
\(=\left(\frac{x-3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{x-3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)^2}\)
\(=\frac{x-3\sqrt{x}+3}{x\sqrt{x}-6\text{x}+9\sqrt{x}}\)
\(=\frac{x-3\sqrt{x}+3}{x\sqrt{x}-6\text{x}+9\sqrt{x}}\)
b/ Vậy để P>1 khi BT trên>1
Ta có phương trình tương đương
\(x-3\sqrt{x}+3-x\sqrt{x}+6\text{x}-9>0\)
\(-x\sqrt{x}+7\text{x}-3\sqrt{x}-6>0\)
Giải pt rồi suy ra
tick cho mình nha
1/ ĐKXĐ: \(\hept{\begin{cases}x>0\\x\ne4\end{cases}}\)
\(A=\left[\frac{x}{\sqrt{x}\left(x-4\right)}-\frac{6}{3\left(\sqrt{x}-2\right)}+\frac{1}{\sqrt{x}-2}\right]:\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)
\(=\left[\frac{\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}-2}\right]:\left(\frac{6}{\sqrt{x}+2}\right)\)
\(=\frac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\frac{\left(\sqrt{x}+2\right)}{6}\)
\(=\frac{-2}{\sqrt{x}-2}.\frac{1}{6}=-\frac{1}{3\left(\sqrt{x}-2\right)}\)
2/ Để \(A>2\Rightarrow\frac{-1}{3\left(\sqrt{x}-2\right)}>2\)\(\Rightarrow6\sqrt{x}-12+1>0\Rightarrow6\sqrt{x}-11>0\Rightarrow\sqrt{x}>\frac{11}{6}\)
\(\Rightarrow x>\frac{121}{36}\)
a)\(P=\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)ĐK:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}.\)
\(=\left(\frac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\left(\frac{\sqrt{x}-1}{\sqrt{x}-\sqrt{x}+1}\right)\)
=\(\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}+1}{\sqrt{x}+1}\)
b)P=3/2 <=>\(\frac{2\sqrt{x}+1}{\sqrt{x}+1}=\frac{3}{2}\Leftrightarrow2\sqrt{x}+1=\frac{3}{2}\sqrt{x}+\frac{3}{2}.\)
\(\Leftrightarrow\frac{1}{2}\sqrt{x}=\frac{1}{2}\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\)
Với x=1 thoả nãm yêu cầu