Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{7}}\)
= \(-\sqrt{3}-\sqrt{2}+\frac{\sqrt{5}+\sqrt{3}}{2}-\frac{\sqrt{7}+\sqrt{5}}{2}\)
= \(-\sqrt{3}-\sqrt{2}+\frac{\sqrt{3}-\sqrt{7}}{2}\)
= \(\frac{-2\sqrt{3}-2\sqrt{2}+\sqrt{3}-\sqrt{7}}{2}=\frac{-\sqrt{3}-2\sqrt{2}-\sqrt{7}}{2}\)
Chúc bạn học tốt !!!
\(A=\sqrt[3]{\left(\frac{1}{2}+\frac{1}{2}\sqrt{13}\right)^3}+\sqrt[3]{\left(\frac{1}{2}-\frac{1}{2}\sqrt{13}\right)^3}\)
\(=\frac{1}{2}+\frac{\sqrt{13}}{2}+\frac{1}{2}-\frac{\sqrt{13}}{2}=1\)
\(B=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}=2+\sqrt{2}+2-\sqrt{2}=4\)
a) \(A=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(A=\sqrt{\left(2+\sqrt{3}\right)\left(\sqrt{2+\sqrt{3}}+2\right)\left(-\sqrt{2+\sqrt{3}}+2\right)}\)
\(A=\sqrt{1}\)
\(A=1\)
b)\(B=\left(\frac{\sqrt{x}}{\sqrt{xy}-y}-\frac{\sqrt{y}}{\sqrt{xy}-x}\right).\left(x\sqrt{y}-y\sqrt{x}\right)\)
\(B=\frac{\sqrt{xy}}{\sqrt{xy}-y}x\sqrt{y}+\frac{\sqrt{x}}{\sqrt{xy}-y}y\sqrt{x}+\left(-\frac{\sqrt{y}}{\sqrt{xy}-x}\right)^2x\sqrt{y}+y\sqrt{x}\)
\(B=x\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{y}+y\frac{\sqrt{x}}{\sqrt{xy}-y}\sqrt{x}+x\frac{\sqrt{x}}{\sqrt{xy}-x}\sqrt{y}-y\sqrt{x}\frac{\sqrt{y}}{\sqrt{xy}-y}\)
\(B=\frac{-x^{\frac{5}{2}}\sqrt{y}+\sqrt{x}.y^{\frac{5}{2}}}{\left(\sqrt{xy}-y\right)\left(\sqrt{xy}-x\right)}\)
\(B=\frac{\left(\sqrt{x}.y^{\frac{5}{2}}-x^{\frac{5}{2}}\sqrt{y}\right)\left(y+\sqrt{xy}\right)\left(x+\sqrt{xy}\right)}{\left(-y^2+xy\right)\left(-x^2+xy\right)}\)
c) \(C=\sqrt{\left(3-\sqrt{5}\right)^2+\sqrt{6}-2\sqrt{5}}\)
\(C=14-6\sqrt{5}+\sqrt{6}-2\sqrt{5}\)
\(C=14-8\sqrt{5}+\sqrt{6}\)
\(C=\sqrt{14-8\sqrt{5}+\sqrt{6}}\)
Bài làm:
a) \(A=\left(\sqrt{3}+1\right)^2+\frac{5}{4}\sqrt{48}-\frac{2}{\sqrt{3+1}}\)
\(A=3+2\sqrt{3}+1+\sqrt{\frac{25.48}{16}}-\frac{2}{\sqrt{4}}\)
\(A=4+2\sqrt{3}+\sqrt{25.3}-\frac{2}{2}\)
\(A=4+2\sqrt{3}+5\sqrt{3}-1\)
\(A=3+7\sqrt{3}\)
b) \(\frac{4}{3-\sqrt{5}}-\frac{3}{\sqrt{5}+\sqrt{2}}-\frac{1}{\sqrt{2}-1}\)
\(=\frac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}-\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)
\(A=\frac{4\left(3+\sqrt{5}\right)}{9-5}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}-\frac{\sqrt{2}+1}{2-1}\)
\(A=3+\sqrt{5}-\sqrt{5}+\sqrt{2}-\sqrt{2}-1\)
\(A=2\)
Phần b mình viết nhầm tên thành A, bn sửa thành B nhé
c) \(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)
\(C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(C=\sqrt{3}-1-2-\sqrt{3}\)
\(C=-3\)
Đặt \(x=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}.\)
\(\Rightarrow x^3=\sqrt{5}+2-3\sqrt[3]{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\left(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\right)-\sqrt{5}+2\)
\(=4-3\sqrt[3]{5-4}.x\)( Vì \(x=\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}\))
\(=4-3x\)
\(\Rightarrow x^3+3x-4=0\Leftrightarrow\left(x^3-1\right)+\left(3x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+4\right)=0\Leftrightarrow x-1=0\)( Vì \(x^2+x+4=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\))
\(\Leftrightarrow x=1\)hay \(\sqrt[3]{\sqrt{5}+2}-\sqrt[3]{\sqrt{5}-2}=1\)
Ta có :
\(B.\sqrt{2}=\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\right).\sqrt{2}\)
\(=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\)
\(=\sqrt{5}+1-\left(\sqrt{5}-1\right)-2=0\)
\(\Rightarrow B=0\)