Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)
\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
a) ĐKXĐ : \(a>0;a\ne1\)
\(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\right)\)
\(Q=\left(\frac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\sqrt{a}}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\right)\)
\(Q=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{\left(a-1\right)-\left(a-4\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}.\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{3}\)
\(Q=\frac{\sqrt{a}+2}{3\sqrt{a}}\)
b) \(Q=\frac{\sqrt{a}+2}{3\sqrt{a}}>2\Rightarrow\sqrt{a}-6\sqrt{a}+2>0\Rightarrow-5\sqrt{a}>-2\Rightarrow0< \sqrt{a}< \frac{2}{5}\)
\(\Rightarrow0< a< \frac{4}{25}\)
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
\(\left(\frac{1}{1-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
\(=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{1-\sqrt{a}}\right).\frac{a-2\sqrt{a}+1}{\sqrt{a}+1}\)
\(=\left(\frac{0}{1-\sqrt{a}}\right).\frac{a-2\sqrt{a}+1}{\sqrt{a}+1}\)
\(=0.\frac{a-2\sqrt{a}+1}{\sqrt{a}+1}\)
\(=0\)
\(A=\left(\frac{1}{1-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\) đkxđ:\(a>0;a\ne1\)
\(A=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{1-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}}\)\
\(A=0\)
Ý tưởng : tử và mẫu có thể đặt nhân tử chung dc, ta rút gọn tử và mẫu cho nha, sau đó làm tiếp...
\(B=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{1}{\sqrt{a}}\)
\(=\left(\frac{\sqrt{a}^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{a^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right):\frac{1}{\sqrt{a}}\)
\(=\left(\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\)\(:\frac{1}{\sqrt{a}}\)
\(=\left(\frac{\sqrt{a}-1}{\sqrt{a}}-\frac{\sqrt{a}+1}{\sqrt{a}}\right):\frac{1}{\sqrt{a}}\)
\(=\frac{\sqrt{a}-1-\sqrt{a}-1}{\sqrt{a}}:\frac{1}{\sqrt{a}}=\frac{-2\sqrt{a}}{\sqrt{a}}=-2\)
a) \(A=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\left(a>0;a\ne1\right)\)
\(=\left[\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right]:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
\(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}-1}{\sqrt{a}}\)
b) Để \(A=\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{a}-1}{\sqrt{a}}=\frac{1}{2}\)
\(\Leftrightarrow2\sqrt{a}-2=\sqrt{a}\)
\(\Leftrightarrow\sqrt{a}=2\Leftrightarrow a=4\left(tm\right)\)
1)))))))
\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{2}{\sqrt{ab}}:\frac{\left(\sqrt{b}-\sqrt{a}\right)^2}{\left(\sqrt{ab}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{2}{\sqrt{ab}}.\frac{\left(\sqrt{ab}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{2\sqrt{ab}-a-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\frac{-\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)
\(\text{VT}=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)=\left(1+\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}.\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)
\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=\text{VP(điều phải chứng minh)}\)
a) Ta có: \(A=\left(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\left(2\sqrt{4+\sqrt{5-2\cdot\sqrt{5}\cdot1+1}}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\left(2\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\left(2\sqrt{4+\left|\sqrt{5}-1\right|}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)(Vì \(\sqrt{5}>1\))
\(=\left(2\sqrt{4+\sqrt{5}-1}\right)\cdot\sqrt{2}\cdot\left(\sqrt{5}-1\right)\)
\(=2\cdot\sqrt{3+\sqrt{5}}\cdot\sqrt{2}\cdot\left(\sqrt{5}-1\right)\)
\(=2\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{6+2\sqrt{5}}\)
\(=2\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{5+2\cdot\sqrt{5}\cdot1+1}\)
\(=2\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=2\cdot\left(\sqrt{5}-1\right)\cdot\left|\sqrt{5}+1\right|\)
\(=2\cdot\left(\sqrt{5}-1\right)\cdot\left(\sqrt{5}+1\right)\)
\(=2\cdot\left(5-1\right)\)
\(=2\cdot4=8\)
b) Ta có: \(B=\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}+\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\cdot\left(1-\frac{2}{a+1}\right)^2\)
\(=\left(\frac{\left(\sqrt{a}-1\right)^2+\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)}\right)\cdot\left(\frac{a+1-2}{a+1}\right)^2\)
\(=\frac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)}\cdot\frac{\left(a-1\right)^2}{\left(a+1\right)^2}\)
\(=\frac{2a+2}{\left(a-1\right)}\cdot\frac{\left(a-1\right)^2}{\left(a+1\right)^2}\)
\(=\frac{2\left(a+1\right)\cdot\left(a-1\right)}{\left(a+1\right)^2}\)
\(=\frac{2a-2}{a+1}\)