Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ne\pm3\)
\(P=\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(\Leftrightarrow P=\left(\frac{x^2-3x}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(\Leftrightarrow P=\frac{\left(x^2-3x\right)+3\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x^2+9\right)}:\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)
\(\Leftrightarrow P=\frac{1}{x+3}:\frac{x-3}{x^2+9}\)
\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x-3\right)}\)
\(a.ĐKXĐ:\hept{\begin{cases}1-3x\ne0\\3x+1\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\...\\x\ge0\end{cases}}}\)
\(b,M=\left(\frac{3x}{1-3x}+\frac{2x}{3x+1}\right):\frac{6x^2+10}{1-6x+9x^2}\)
\(=\left(\frac{3x\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\frac{2x\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\left(\frac{3x+9x^2+2x-6x^2}{\left(1-3x\right)\left(1+3x\right)}\right).\frac{\left(1-3x\right)^2}{6x^2+10}\)
\(=\frac{5x+3x^2}{1+3x}.\frac{1-3x}{2\left(3x^2+5\right)}\)
==>Sai đề không mem
a) A=\(\frac{x+1}{6x^3-6x^2}-\frac{x-2}{8x^3-8x}=\frac{x+1}{6x^2\left(x-1\right)}-\frac{x-2}{8x\left(x-1\right)\left(x+1\right)}=\frac{4\left(x+1\right)^2-3x\left(x-2\right)}{24x^2\left(x-1\right)\left(x+1\right)}=\frac{4x^2+8x+4-3x^2+6x}{24x^2\left(x-1\right)\left(x+1\right)}=\frac{x^2+14x+10}{24x^2\left(x-1\right)\left(x+1\right)}\)
Ta có: \(\left(3x+2\right)\left(9x^2-6x+4\right)-9x\left(3x^2+1\right)\)
\(=27x^3+8-27x^3-9x\)
=8-9x
a) ĐKXĐ: \(x\ne\left\{-3;-\frac{1}{3}\right\}\)
Ta có: \(\frac{3x-1}{3x+1}+\frac{x-3}{x+3}=\)\(\frac{\left(3x-1\right)\left(x+3\right)+\left(x-3\right)\left(3x+1\right)}{\left(3x+1\right)\left(x+3\right)}\)=\(\frac{3x^2+9x-x-3+3x^2+x-9x-3}{3x^2+9x+x+3}\)
= \(\frac{6x^2-6}{3x^2+10x+3}\)
=> \(\frac{6x^2-6}{3x^2+10x+3}=2\)
<=> \(6x^2-6=6x^2+20x+6\)
<=> 20x=12
<=>x=\(\frac{12}{20}=\frac{3}{5}\)
Vậy x=3/5
ĐKXĐ : x ≠ ±1/3
Ta có : \(\frac{3x-1}{6x+2}-\frac{3x+1}{2-6x}-\frac{6x}{9x^2-1}\)
\(=\frac{3x-1}{6x+2}+\frac{3x+1}{6x-2}-\frac{6x}{\left(3x-1\right)\left(3x+1\right)}\)
\(=\frac{\left(3x-1\right)\left(3x-1\right)}{2\left(3x-1\right)\left(3x+1\right)}+\frac{\left(3x+1\right)\left(3x+1\right)}{2\left(3x-1\right)\left(3x+1\right)}-\frac{12x}{2\left(3x-1\right)\left(3x+1\right)}\)
\(=\frac{9x^2-6x+1}{2\left(3x-1\right)\left(3x+1\right)}+\frac{9x^2+6x+1}{2\left(3x-1\right)\left(3x+1\right)}-\frac{12x}{2\left(3x-1\right)\left(3x+1\right)}\)
\(=\frac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}\)
\(=\frac{18x^2-12x+2}{2\left(3x-1\right)\left(3x+1\right)}\)
\(=\frac{2\left(9x^2-6x+1\right)}{2\left(3x-1\right)\left(3x+1\right)}\)
\(=\frac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}=\frac{3x-1}{3x+1}\)