\(\dfrac{x^2+x-6}{x^3-4x^2-18x+9}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :

\(\dfrac{x^2+x-6}{x^3-4x^2-18x+9}=\dfrac{\left(x-2\right)\left(x+3\right)}{\left(x+3\right)\left(x^2-7x+3\right)}=\dfrac{x-2}{x^2-7x+3}\)

3 tháng 12 2016

Đặt \(A=\frac{x^2+x-6}{x^3-4x^2-18x+9}\)

       \(A=\frac{x^2+3x-2x-6}{x^3+3x^2-7x^2-21x+3x+9}\)

        \(A=\frac{x\left(x+3\right)-2\left(x+3\right)}{x^2\left(x+3\right)-7x\left(x+3\right)+3\left(x+3\right)}\)

         \(A=\frac{\left(x-2\right)\left(x+3\right)}{\left(x^2-7x+3\right)\left(x+3\right)}\)

         \(A=\frac{x-2}{x^2-7x+3}\)

25 tháng 11 2018

\(\frac{x^2+x-6}{x^3-4x^2-18x+9}=\frac{x^2+3x-2x-6}{x^3+3x^2-7x^2-21x+3x+9}\)

\(=\frac{x\left(x+3\right)-2\left(x+3\right)}{x^2\left(x+3\right)-7x\left(x+3\right)+3\left(x+3\right)}\)

\(=\frac{\left(x+3\right)\left(x-2\right)}{\left(x+3\right)\left(x^2-7x+3\right)}=\frac{x-2}{x^2-7x+3}\) (điều kiện: x khác -3)

25 tháng 11 2018

t phân tích \(x^2-7x+3\) được như này =)) 

\(x^2-7x+3=x^2-2.x.\frac{7}{2}+\left(\frac{7}{2}\right)^2-\frac{49}{4}+3\)

\(=\left(x-\frac{7}{2}\right)^2-\frac{37}{4}\)

\(=\left(x-\frac{7}{2}\right)^2-\left(\frac{\sqrt{37}}{2}\right)^2\)

\(=\left(x-\frac{7}{2}-\frac{\sqrt{37}}{2}\right)\left(x-\frac{7}{2}+\frac{\sqrt{37}}{2}\right)\)

\(=\left(x-\frac{7+\sqrt{37}}{2}\right)\left(x-\frac{7-\sqrt{37}}{2}\right)\)

9 tháng 4 2018

a)

\(\dfrac{x^2+x-6}{x^3-4x^2-18x+9}=\dfrac{x^2+3x-2x-6}{x^3+3x^2-7x^2-21x+3x+9}\)

\(=\dfrac{x\left(x+3\right)-2\left(x+3\right)}{x^2\left(x+3\right)-7x\left(x+3\right)+3\left(x+3\right)}\)

\(=\dfrac{\left(x-2\right)\left(x+3\right)}{\left(x^2-7x+3\right)\left(x+3\right)}=\dfrac{x-2}{x^2-7x+3}\)

3 tháng 1 2019

\(ĐKXĐ:x\ne-3;2\)

\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}-\frac{1}{x-2}=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x+2\right)}-\frac{1}{x-2}\)

\(=\frac{x^2+4x+4}{\left(x+3\right)\left(x+2\right)}-\frac{5}{\left(x+3\right)\left(x+2\right)}-\frac{x+3}{\left(x+2\right)\left(x+3\right)}\)

\(=\frac{x^2+4x+4-5-x-3}{\left(x+2\right)\left(x+3\right)}=\frac{x^2+3x-4}{\left(x+3\right)\left(x+2\right)}=\frac{\left(x+4\right)\left(x-1\right)}{\left(x+3\right)\left(x+2\right)}\)

\(x^2-9=0\Leftrightarrow x=3\left(vì:x\ne-3\right)\)

\(\Rightarrow P=\frac{7}{15}\)

\(P\inℤ\Leftrightarrow x^2+3x-4⋮x^2+5x+6\Leftrightarrow2x+10⋮x^2+5x+6\Leftrightarrow12⋮x^2+5xx+6\)

\(................\left(dễ\right)\)

3 tháng 1 2019

P/s: shitbo sai rồi nha bạn!Nếu không tin thì thay x = 3 vào P ban đầu và giá trị P sau khi rút gọn sẽ thấy sự khác biệt =)

ĐK: \(x\ne-3;x\ne2\)

a) \(P=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}-\frac{1}{x-2}\)

\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)

\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)

b) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)

Thay vào điều kiện,tìm loại x = -3 .Tìm được x =3

Ta có: \(P=\frac{x-4}{x-2}=\frac{3-4}{3-2}=-1\)

c)Ta có: \(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)

Để P có giá trị nguyên thì \(\frac{2}{x-2}\) nguyên hay \(x-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Suy ra \(x=\left\{0;1;3;4\right\}\)

28 tháng 6 2017

Phép trừ các phân thức đại số

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)