\(B=\left(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(B=\left(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{x}{x+\sqrt{x}+1}\right)\)

\(=\dfrac{2x\sqrt{x}-2x+\sqrt{x}-1-x\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x}{x+\sqrt{x}+1}\)

\(=\dfrac{x\sqrt{x}-2x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(x+1\right)\cdot\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2\cdot\left(x-\sqrt{x}+1\right)}\)

2 tháng 9 2021

giải chi tiết hơn được không ạ

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

Nếu có thêm điều kiện \(y>1\) thì kết quả là \(\dfrac{1}{x-1}\)

19 tháng 3 2021

a) - Với \(x>0,x\ne1\), ta có:

\(A=\left(\frac{1}{x-1}+\frac{3\sqrt{x}+5}{x\sqrt{x}-x-\sqrt{x}+1}\right)\left[\frac{\left(\sqrt{x}+1\right)^2}{4\sqrt{x}}-1\right]\)

\(A=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\sqrt{x}\left(x-1\right)-\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}+1}{4\sqrt{x}}-\frac{4\sqrt{x}}{4\sqrt{x}}\right]\)

\(A=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}-4\sqrt{x}+1}{4\sqrt{x}}\right]\)

\(A=\left[\frac{\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}-1\right)}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x^2-2\sqrt{x}+1}{4\sqrt{x}}\right]\)

\(A=\frac{\sqrt{x}+3\sqrt{x}-1+5}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)

\(A=\frac{4+4\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)

\(A=\frac{4\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)

\(A=\frac{4\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}\)

\(A=\frac{4\left(x-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}=\frac{1}{\sqrt{x}}\)

Vậy với \(x>0,x\ne1\)thì \(A=\frac{1}{\sqrt{x}}\)

19 tháng 3 2021

\(A=\left(\frac{1}{x-1}+\frac{3\sqrt{x}+5}{x\sqrt{x}-x-\sqrt{x}+1}\right)\left[\frac{\left(\sqrt{x}+1\right)^2}{4\sqrt{x}}-1\right]\)

\(=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\sqrt{x}\left(x-1\right)-\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}+1}{4\sqrt{x}}-\frac{4\sqrt{x}}{4\sqrt{x}}\right]\)

\(=\left[\frac{1}{x-1}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x+2\sqrt{x}-4\sqrt{x}+1}{4\sqrt{x}}\right]\)

\(=\left[\frac{\sqrt{x}-1}{\left(x-1\right)\left(\sqrt{x}-1\right)}+\frac{3\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(x-1\right)}\right]\left[\frac{x^2-2\sqrt{x}+1}{4\sqrt{x}}\right]\)

\(=\frac{\sqrt{x}+3\sqrt{x}-1+5}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)

\(=\frac{4+4\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)

\(=\frac{4\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}\)

\(=\frac{4\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}\)

\(=\frac{4\left(x-1\right)\left(\sqrt{x}-1\right)}{4\left(x-1\right)\left(\sqrt{x}-1\right).\sqrt{x}}=\frac{1}{\sqrt{x}}\)

b) \(B=\left(x-\sqrt{x}+1\right)\cdot A=\frac{1}{\sqrt{x}}\left(x-\sqrt{x}+1\right)=\frac{x}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}}+\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{x}}+\sqrt{x}-1\)

Xét hiệu B - 1 ta có : \(B-1=\frac{1}{\sqrt{x}}+\sqrt{x}-2=\frac{1}{\sqrt{x}}+\frac{x}{\sqrt{x}}-\frac{2\sqrt{x}}{\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

Dễ thấy \(\hept{\begin{cases}\sqrt{x}>0\forall x>0\\\left(\sqrt{x}-1\right)^2\ge0\forall x\ge0\end{cases}}\Rightarrow\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\ge0\forall x>0\)

Đẳng thức xảy ra <=> x = 1 ( ktm ĐKXĐ )

Vậy đẳng thức không xảy ra , hay chỉ có B - 1 > 0 <=> B > 1 ( đpcm )

4 tháng 11 2017

\(M=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\dfrac{3\sqrt{x}-1}{\sqrt{x}+1}\right)\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x^3}-1}-\dfrac{2x+1}{\sqrt{x^3}-1}\right)\)

\(M=\left(\dfrac{x+\sqrt{x}-3\sqrt{x}+1}{\sqrt{x}+1}\right)\left(\dfrac{x-\sqrt{x}-2x-1}{\sqrt{x^3}-1}\right)\)

\(M=\left(\dfrac{x-2\sqrt{x}+1}{\sqrt{x}+1}\right)\left(\dfrac{-x-\sqrt{x}-1}{\sqrt{x^3}-1}\right)\)

\(M=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\dfrac{-\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(M=\dfrac{1-\sqrt{x}}{\sqrt{x}+1}\)

10 tháng 6 2018

\(\text{a) }\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\\ =\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)\left(x-y\right)}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{x}+y\sqrt{y}-x\sqrt{x}+x\sqrt{y}+y\sqrt{x}-y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\\ =\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\\ =\sqrt{xy}\)

\(\text{b) }\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

\(\text{c) }\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\\ =\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}\\ =\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}\\ =\dfrac{\sqrt{y}-1}{x-1}\)

10 tháng 6 2018

a)\(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

\(=\dfrac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{x}\sqrt{y}+y\right)\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x+2\sqrt{xy}+y\)

\(=x+\sqrt{xy}+y-x+2\sqrt{xy}+y\)

\(=3\sqrt{xy}+2y\)

25 tháng 4 2017

B=\(\sqrt{x}-1\)

Để B=3 thì \(x=16\)

27 tháng 5 2017

Ôn tập Căn bậc hai. Căn bậc ba

Bài 1:

a: ĐKXĐ: 2x+3>=0 và x-3>0

=>x>3

b: ĐKXĐ:(2x+3)/(x-3)>=0

=>x>3 hoặc x<-3/2

c: ĐKXĐ: x+2<0

hay x<-2

d: ĐKXĐ: -x>=0 và x+3<>0

=>x<=0 và x<>-3

7 tháng 11 2018

a, P=\(\left(\dfrac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\right)\div\left(\dfrac{x-\sqrt{x}+\sqrt{x}-4}{x-1}\right)\)

=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\times\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{x-4}\)

=\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

7 tháng 11 2018

b, P<\(\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)<\(\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-2}{2\left(\sqrt{x}+2\right)}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}< 0\)

ta có: \(\sqrt{x}\ge0\)với \(\forall x\ge0;x\ne1;x\ne4\)

\(2\left(\sqrt{x}+2\right)\ge0\) với\(\forall x\ge0;x\ne1;x\ne4\)

Vậy không có giá trị nào của x để P<\(\dfrac{1}{2}\)

31 tháng 7 2017

Câu a có sai đề nên mk có sửa lại nha Liên hệ giữa phép chia và phép khai phương

a)

\(P=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\\ P=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\\ P=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b)

\(Q< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}}< 0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\\sqrt{x}-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x< 4\end{matrix}\right.\\ \Leftrightarrow0< x< 4\)