Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x-\dfrac{1}{1-x}\right):\dfrac{x^2-x+1}{x^2-2x+1}\)
\(=\left(x+\dfrac{1}{x-1}\right):\dfrac{x^2-x+1}{\left(x-1\right)^2}\)
\(=\dfrac{x^2-x+1}{x-1}\cdot\dfrac{\left(x-1\right)^2}{x^2-x+1}\)
\(=x-1\)
b) Ta có: \(\left(1+\dfrac{x}{y}+\dfrac{x^2}{y^2}\right)\left(1-\dfrac{x}{y}\right)\cdot\dfrac{y^2}{x^3-y^3}\)
\(=\left(\dfrac{y^2}{y^2}+\dfrac{xy}{y^2}+\dfrac{x^2}{y^2}\right)\cdot\left(\dfrac{y-x}{y}\right)\cdot\dfrac{y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{x^2+xy+y^2}{y^2}\cdot\dfrac{-\left(x-y\right)}{y}\cdot\dfrac{y^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\dfrac{-1}{y}\)
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
\(a.\left(3x-1\right)^2+\left(x+3\right)\left(2x-1\right)\)
\(=9x^2-6x+1-2x^2+x-6x+3\)
\(=7x^2-11x+4\)
a)2x(2x-y)+2y(x-2y)=\(4x^2-2xy+2xy-4y^2=4x^2-4y^2.\)
b)\(x\left(x^{n-1}+y^{n-1}\right)-y^{n-1}\left(x-y\right)\)=\(x^n+y^n-y^n+y^n=x^n+y^n\)
x(x-y)+y(x-y)
= x2-xy+xy-y2
= x2-y2
xn-1(x+y)-y(xn-1+yn-1)
= xn-1+1+xn-1y-xn-1y-y1+n-1
= xn-yn
1.x(x-y)+y(x-y)
=x^2-xy+xy-y^2
=x^2-y^2
2.x^n-1(x-y)-y(x^n-1+y^n-1)
=x^n-x^n-1y+x^n-1y-y^n
=x^n-y^n
a) $x(x-y)+y(x-y)=(x+y)(x-y)=x^2-y^2$
b) $x^{n-1}(x+y)-y(x^{n-1}+y^{n-1})$
$=x^{n-1}.x+x^{n-1}y-yx^{n-1}-y.y^{n-1}$
$=x^n-y^n$
mơn bạn nhé