Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)
b,\(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{\left(\sqrt{2}+3\right)^2}-3+\sqrt{2}=\sqrt{2}+3-3+\sqrt{2}=2\sqrt{2}\)
c, \(\sqrt{9x^2}-2x=\sqrt{\left(3x\right)^2}-2x=3x-2x=x\)
d, câu này sai đề rồi , nếu sửa lại phải như này :
\(x-4+\sqrt{16-8x+x^2}=x-4+\sqrt{\left(4-x\right)^2}=x-4+4-x=0\)
a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)=\(\sqrt{3}-1-\sqrt{3}=-1\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\) = \(\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)
= \(3+\sqrt{2}-3+\sqrt{2}\) = \(2\sqrt{2}\)
c) \(\sqrt{9x^2}-2x=\sqrt{\left(3x\right)^2}-2x\) = \(\left|3x\right|-2x=-3x-2x\) (x < 0)
= \(-5x\)
d) \(x-4+\sqrt{16-8x+x^2}\) \(\left(x>4\right)\) = \(x-4+\sqrt{\left(4-x\right)^2}\)
= \(x-4+\left|4-x\right|\) = \(x-4-4+x\) ( \(x>4\))
= \(2x-8\)
a/ Sai đề.
\(x+2\sqrt{2x-4}=\left(x-2\right)+2.\sqrt{2}.\sqrt{x-2}+2=\left(\sqrt{2}+\sqrt{x-2}\right)^2\)
b/ \(M=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{\left(\sqrt{2}+\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{2}-\sqrt{x-2}\right)^2}\)
\(=\sqrt{2}+\sqrt{x-2}+\left|\sqrt{2}-\sqrt{x-2}\right|\)
1. Nếu \(2\le x\le4\) thì \(M=\sqrt{2}+\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}=2\sqrt{2}\)
2. Nếu \(x>4\) thì \(M=\sqrt{2}+\sqrt{x-2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)
\(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3.\sqrt{5}}-\sqrt{2}\)
\(\sqrt{2}.A=\sqrt{5+2\sqrt{5}.1+1}+\sqrt{9-2.3.\sqrt{5}+5}-2\)
\(\sqrt{2}.A=\sqrt{5}+1+3-\sqrt{5}-2=2\)
\(\Rightarrow A=\sqrt{2}\)
ĐKXĐ: \(\hept{\begin{cases}2x-4\ge0\\x+2.\sqrt{2x-4}\ge0\\x-2\sqrt{2x-4}\end{cases}}\Leftrightarrow x\ge2\)
\(\sqrt{x+2.\sqrt{2x-4}}+\sqrt{x-2.\sqrt{2x-4}}\)
\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{2}+2}+\sqrt{x-2-2.\sqrt{x-2}.\sqrt{2}+2}\)
\(=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)
Tự phá trị tuyệt đối
\(A=\frac{\sqrt{x-2\sqrt{2x-4}}}{\sqrt{2}}=\frac{\sqrt{2}.\sqrt{x-2\sqrt{2x-4}}}{2}=\frac{\sqrt{2x-4\sqrt{2x-4}}}{2}=\frac{\sqrt{\left(2x-4\right)-4\sqrt{2x-4}+4}}{2}=\frac{\sqrt{\left(\sqrt{2x-4}-2\right)^2}}{2}=\frac{\left|\sqrt{2x-4}-2\right|}{2}\)
Đến đây có hai trường hợp :
- Với \(2\le x< 4\)\(\Rightarrow\left|\sqrt{2x-4}-2\right|=2-\sqrt{2x-4}\Rightarrow A=\frac{2-\sqrt{2x-4}}{2}\)
- Với \(x\ge4\Rightarrow\left|\sqrt{2x-4}-2\right|=\sqrt{2x-4}-2\Rightarrow A=\frac{\sqrt{2x-4}-2}{2}\)
b) \(B=\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}+a+1=\frac{\sqrt{a}\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{a+\sqrt{a}+1}-\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}+a+1=a-\sqrt{a}-a-\sqrt{a}+a+1=a-2\sqrt{a}+1=\left(\sqrt{a}-1\right)^2\)
Vì hai vế đều dương nên bình phương hai vế, ta được:
\(H^2=\left(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\right)^2\)
\(=x+2\sqrt{2x-4}+x-2\sqrt{2x-4}+2\sqrt{\left(x+2\sqrt{2x-4}\right)\left(x-2\sqrt{2x-4}\right)}\)
\(=2x+2\sqrt{x^2-4\left(2x-4\right)}=2x+2\sqrt{x^2-8x+16}\)
=2x + 2√ (x-4)^2 = 2x + 2|x-4|
Đến đây bạn tự làm tiếp nha (với x>2)
ĐKXĐ:
\(2x-4\ge0\)và \(x+2\sqrt{2x-4}\ge0\)và \(x-2\sqrt{2x-4}\ge0\)
<=>\(2x\ge4\)và \(x\ge2\sqrt{2x-4}\)
<=>\(x\ge2\text{ và }x^2\ge8x-16\)
<=>\(x\ge2\text{ và }\left(x-4\right)^2\ge0\)
=>\(x\ge2\)
\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
\(=\sqrt{x-2+2.\sqrt{2}\sqrt{x-2}+2}+\sqrt{x-2-2.\sqrt{2}\sqrt{x-2}+2}\)
\(=\sqrt{\left(\sqrt{x-2}+2\right)^2}=\sqrt{\left(\sqrt{x-2}-2\right)^2}\)
\(=\left|\sqrt{x-2}+2\right|+\left|\sqrt{x-2}-2\right|\)
Với \(\sqrt{x-2}-2>0\) thì \(A=\sqrt{x-2}+2+\sqrt{x-2}-2=2\sqrt{x-2}\)
Với \(\sqrt{x-2}-2<0\) thì \(A=\sqrt{x-2}+2+2-\sqrt{x-2}=4\)
a, Ta có : \(4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}\right)^2-2\sqrt{3}\times1+1^2=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\left|\sqrt{3}-1\right|-\sqrt{3}\)
Ta có : \(\sqrt{3}>\sqrt{1}\)(vì 3>1)
\(\Leftrightarrow\sqrt{3}>1\Leftrightarrow\sqrt{3}-1>0\Rightarrow\left|\sqrt{3}-1\right|=\sqrt{3}-1\)
Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\left|\sqrt{3}-1\right|-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)
a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)=\(\sqrt{3}-1-\sqrt{3}=-1\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\) = \(\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)
= \(3+\sqrt{2}-3+\sqrt{2}\) = \(2\sqrt{2}\)
d) \(x-4+\sqrt{16-8x+x^2}\) \(\left(x>4\right)\) = \(x-4+\sqrt{\left(4-x\right)^2}\)
= \(x-4+\left|4-x\right|\) = \(x-4-4+x\) (vì \(x>4\))
= \(2x-8\)