K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 7 2021

\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(4\sqrt{3}+\sqrt{5}\right)^2}\)

\(=2\sqrt{2}-\sqrt{5}-4\sqrt{3}-\sqrt{5}\)

\(=2\sqrt{2}-4\sqrt{3}-2\sqrt{5}\)

\(\sqrt{\left(4+\sqrt{3}\right)\sqrt{19-8\sqrt{3}}+3}=\sqrt{\left(4+\sqrt{3}\right)\sqrt{\left(4-\sqrt{3}\right)^2}+3}\)

\(=\sqrt{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)+3}=\sqrt{4-3+3}=2\)

a) Ta có: \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}\)

\(=2\sqrt{2}-\sqrt{5}-4\sqrt{3}+\sqrt{5}\)

\(=2\sqrt{2}-4\sqrt{3}\)

b) Ta có: \(\sqrt{\left(4+\sqrt{3}\right)\cdot\sqrt{19-8\sqrt{3}+3}}\)

\(=\sqrt{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)+3}\)

=4

a: \(A=3+\left(-2\right)\cdot\sqrt{3}+3\cdot\sqrt{3}-2-\sqrt{3}\)

\(=3-2=1\)

\(B=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

b: B<A

=>B-1<0

=>\(\dfrac{\sqrt{x}-1-\sqrt{x}}{\sqrt{x}}< 0\)

=>-1/căn x<0

=>căn x>0

=>x>0 và x<>1

5 tháng 7 2021

a)\(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}=\sqrt{\dfrac{1}{2}\left(16+8\sqrt{3}\right)}-\sqrt{\dfrac{1}{2}\left(16-8\sqrt{3}\right)}\)

\(=\sqrt{\dfrac{1}{2}\left(2+2\sqrt{3}\right)^2}-\sqrt{\dfrac{1}{2}\left(2-2\sqrt{3}\right)^2}\)\(=\sqrt{\dfrac{1}{2}}\left(2+2\sqrt{3}\right)-\sqrt{\dfrac{1}{2}}\left(2\sqrt{3}-2\right)=2\sqrt{2}\)

b)\(=\dfrac{\sqrt{16+2.4\sqrt{5}+5}}{4+\sqrt{5}}.\sqrt{\left(2-\sqrt{5}\right)^2}\)\(=\dfrac{\sqrt{\left(4+\sqrt{5}\right)^2}}{4+\sqrt{5}}\left|2-\sqrt{5}\right|=\sqrt{5}-2\)

a) Ta có: \(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}\)

\(=\sqrt{6}+\sqrt{2}-\sqrt{6}+\sqrt{2}\)

\(=2\sqrt{2}\)

b) Ta có: \(\dfrac{\sqrt{21+8\sqrt{5}}}{4+\sqrt{5}}\cdot\sqrt{9-4\sqrt{5}}\)

\(=\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)\)

=16-5=11

a) Ta có: \(\left(\sqrt{7}-\sqrt{2}\right)\cdot\sqrt{9+2\sqrt{14}}\)

\(=\left(\sqrt{7}-\sqrt{2}\right)\cdot\left(\sqrt{7}+\sqrt{2}\right)\)

=7-2

=5

d) Ta có: \(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\dfrac{6\sqrt{2}-4}{3-\sqrt{2}}\)

\(=2\sqrt{2}-\sqrt{7}+5\sqrt{7}-\dfrac{2\sqrt{2}\left(3-\sqrt{2}\right)}{3-\sqrt{2}}\)

\(=2\sqrt{2}+4\sqrt{7}-2\sqrt{2}\)

\(=4\sqrt{7}\)

1 tháng 7 2021

\(a,=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

\(b,=\sqrt{6-2\sqrt{3+\sqrt{12+2\sqrt{12}+1}}}\)

\(=\sqrt{6-2\sqrt{3+\sqrt{12}+1}}\)

\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}}\)

\(=\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{6-2\sqrt{3}-2}=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)

\(c,=\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{4+2.2\sqrt{3}+3}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{25-2.5\sqrt{3}+3}}\)

\(=\sqrt{\sqrt{3}+5-\sqrt{3}}=\sqrt{5}\)

\(d,=\sqrt{23-6\sqrt{10+4\sqrt{2-2\sqrt{2}+1}}}\)

\(=\sqrt{23-6\sqrt{6+4\sqrt{2}}}\)

\(=\sqrt{23-6\sqrt{4+2.2\sqrt{2}+2}}\)

\(=\sqrt{23-6\sqrt{\left(2+\sqrt{2}\right)^2}}\)

\(=\sqrt{23-12-6\sqrt{2}}=\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)

a) Ta có: \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

b) Ta có: \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)

\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)

\(=\sqrt{6-2\left(\sqrt{3}+1\right)}\)

\(=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)

c) Ta có: \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)

\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{\sqrt{3}+5-\sqrt{3}}\)

\(=\sqrt{5}\)

d) Ta có: \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)

\(=\sqrt{23-6\sqrt{10+4\left(\sqrt{2}-1\right)}}\)

\(=\sqrt{23-6\sqrt{6-4\sqrt{2}}}\)

\(=\sqrt{23-6\left(2-\sqrt{2}\right)}\)

\(=\sqrt{11+6\sqrt{2}}\)

\(=3+\sqrt{2}\)

12 tháng 9 2023

a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\sqrt{2^2\cdot7}-\sqrt{3^2\cdot7}+\dfrac{\sqrt{7}\cdot\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)

\(=2\sqrt{7}-3\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1\)

\(=-\sqrt{7}\)

\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\left[\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\dfrac{2\cdot4}{\sqrt{x}-3}\)

\(=\dfrac{8}{\sqrt{x}-3}\)

b) \(A>B\) khi 

\(\dfrac{8}{\sqrt{x}-3}< -\sqrt{7}\)

\(\Leftrightarrow8< -\sqrt{7x}+3\sqrt{7}\)

\(\Leftrightarrow x< \dfrac{\left(3\sqrt{7}-8\right)^2}{7}\)

Bài 1:

a) Ta có: \(\left(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}}+\sqrt{5}\right)\)

\(=\left(\sqrt{5}+\sqrt{5}-\dfrac{5}{4}\cdot\dfrac{2}{\sqrt{5}}+\sqrt{5}\right)\)

\(=3\sqrt{5}-\dfrac{1}{2}\sqrt{5}\)

\(=\dfrac{5}{2}\sqrt{5}\)

c) Ta có: \(\dfrac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)

\(=\dfrac{\sqrt{35}\left(\sqrt{5}-\sqrt{7}+2\sqrt{2}\right)}{\sqrt{35}}\)

\(=2\sqrt{2}+\sqrt{5}-\sqrt{7}\)

Bài 2:

e) ĐKXĐ: \(\dfrac{4}{3}\le x\le6\)

Ta có: \(\sqrt{6-x}=3x-4\)

\(\Leftrightarrow6-x=\left(3x-4\right)^2\)

\(\Leftrightarrow9x^2-24x+16+6-x=0\)

\(\Leftrightarrow9x^2-25x+22=0\)

\(\Delta=\left(-25\right)^2-4\cdot9\cdot22=625-792< 0\)

Vậy: Phương trình vô nghiệm

 

22 tháng 8 2023

\(A=\left(4+\sqrt{3}\right)\sqrt{19-8\sqrt{3}}\)

\(A=\left(4+\sqrt{3}\right)\sqrt{4^2-2\cdot4\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(A=\left(4+\sqrt{3}\right)\sqrt{\left(4-\sqrt{3}\right)^2}\)

\(A=\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)\)

\(A=4^2-3\)

\(A=13\)

\(B=\dfrac{3}{4+\sqrt{13}}+\dfrac{\sqrt{52}}{2}-3\)

\(B=\dfrac{3\left(4-\sqrt{13}\right)}{\left(4-\sqrt{13}\right)\left(4+\sqrt{13}\right)}+\dfrac{2\sqrt{13}}{2}-3\)

\(B=\dfrac{3\left(4-\sqrt{13}\right)}{16-13}+\sqrt{13}-3\)

\(B=4-\sqrt{13}+\sqrt{13}-3\)

\(B=4-3\)

\(B=1\)

a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)

\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)

\(=33\sqrt{3}\cdot\sqrt{3}\)

=99

b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)

\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)

\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)

c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)

\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)

\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)

\(=36-36\sqrt{2}+18\sqrt{3}\)

d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)

\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)

\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)

\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)

2 tháng 7 2021

a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)

   \(=28.3+9.3-4.3=99\)

b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)

  \(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)

a: Ta có: \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}-\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\dfrac{8}{8+2\sqrt{15}}-\dfrac{8}{8-2\sqrt{15}}\)

\(=\dfrac{64-16\sqrt{15}-64-16\sqrt{15}}{4}\)

\(=\dfrac{-32\sqrt{15}}{4}=-8\sqrt{15}\)

b: Ta có: \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}\)

\(=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{-2}\)

\(=-\dfrac{6\sqrt{2}}{2}=-3\sqrt{2}\)

19 tháng 8 2021

b) \(\dfrac{1}{4-3\sqrt{2}}-\dfrac{1}{4+3\sqrt{2}}=\dfrac{4+3\sqrt{2}-4+3\sqrt{2}}{\left(4-3\sqrt{2}\right)\left(4+3\sqrt{2}\right)}=\dfrac{6\sqrt{2}}{-2}=-3\sqrt{2}\)

c) \(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right):\sqrt{28}=\dfrac{\left(\sqrt{7}+3\right)^2-\left(\sqrt{7}-3\right)^2}{\left(\sqrt{7}-3\right)\left(\sqrt{7}+3\right)}:\sqrt{28}=\dfrac{16+6\sqrt{7}-16+6\sqrt{7}}{7-9}=\dfrac{12\sqrt{7}}{-2}=-6\sqrt{7}\)