\(A=\frac{a^4-4a^3+a^2+6a+4}{a^2-2a+12}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2022

\(a^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{16-10-2\sqrt{5}}\)

\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}\)

hay \(a=\sqrt{5}+1\)

\(T=\dfrac{\left(6+2\sqrt{5}\right)^2-4\cdot\left(16+8\sqrt{5}\right)+6+2\sqrt{5}+6\sqrt{5}+6+4}{6+2\sqrt{5}-2\sqrt{5}-2+12}\)

\(=\dfrac{56+24\sqrt{5}-50-24\sqrt{5}}{16}=\dfrac{6}{16}=\dfrac{3}{8}\)

\(a,\frac{a-4\sqrt{a}+4-1}{\sqrt{a}-3}=\frac{\left(\sqrt{a}-2\right)^2-1}{\sqrt{a}-3}.\)

\(=\frac{\left(\sqrt{a}-3\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-3}\)

\(=\sqrt{a}-1\)

\(b,\frac{a+\sqrt{a^2-6a+9}}{2a-3}=\frac{a+\sqrt{\left(a-3\right)^2}}{2a-3}\)

\(=\frac{a+a-3}{2a-3}=\frac{2a-3}{2a-3}\)

\(=1\)

17 tháng 6 2017

\(\frac{\sqrt{3x^2+6xy+3y^2}}{x^2-y^2}\)

<=>\(\frac{\sqrt{3.\left(x+y\right)^2}}{\left(x-y\right).\left(x+y\right)}\)

<=>\(\frac{\sqrt{3}\left|x+y\right|}{\left(x-y\right).\left(x+y\right)}.\)

<=>\(\frac{\sqrt{3}}{x-y}\)

28 tháng 5 2018

a= bao nhiêu có được bấm máy ko bạn

28 tháng 5 2018

k bạn ơi mik phải rút gọn a

29 tháng 7 2019

\(a,A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}\left(x\ge0;x\ne16\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

Vây...

\(b,\)Ta có:\(x=4-2\sqrt{3}=\left(1-\sqrt{3}\right)^2\)

Thay \(x=\left(1-\sqrt{3}\right)^2\)vào A ta được:

\(A=\frac{\sqrt{\left(1-\sqrt{3}\right)^2}-2}{\sqrt{\left(1-\sqrt{3}\right)^2}+2}=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}=\frac{\sqrt{3}-3}{\sqrt{3}-1}=\frac{-\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=-\sqrt{3}\)

AH
Akai Haruma
Giáo viên
28 tháng 8 2018

Lời giải:

Bình phương biểu thức $a$ ta có:

\(a^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{4^2-(10+2\sqrt{5})}\)

\(=8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{5+1-2\sqrt{5}}\)

\(=8+2\sqrt{(\sqrt{5}-1)^2}=8+2(\sqrt{5}-1)=6+2\sqrt{5}\)

\(=[\pm (\sqrt{5}+1)]^2\)

Mà $a>0$ nên \(a=\sqrt{5}+1\)

Xét thêm 1 số \(1-\sqrt{5}\)

Ta thấy \(\left\{\begin{matrix} \sqrt{5}+1+1-\sqrt{5}=2\\ (\sqrt{5}+1)(1-\sqrt{5})=-4\end{matrix}\right.\) Do đó, theo định lý Viete đảo thì $a$ là nghiệm của pt \(x^2-2x-4=0\), tức là $a^2-2a-4=0$

Do đó:

\(T=\frac{a^2(a^2-2a-4)-2a(a^2-2a-4)+a^2-2a-4+8}{a^2-2a-4-10a+16}\)

\(=\frac{8}{-10a+16}=\frac{8}{-10(\sqrt{5}+1)+16}=\frac{8}{6-10\sqrt{5}}=\frac{4}{3-5\sqrt{5}}\)