Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3 :
\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\) ĐKXđ : \(x\ne\pm1\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{10}{x+1}\)
\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)
ĐKXđ : \(x\ne0;x\ne3\)
\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)
Ta có:
a) M = \(\left(\frac{6x}{x^2-9}-\frac{1}{x+3}+\frac{5}{3-x}\right):\frac{4}{x^2-3x}\)
M = \(\left(\frac{6x}{\left(x-3\right)\left(x+3\right)}-\frac{x-3}{\left(x+3\right)\left(x-3\right)}-\frac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\cdot\frac{x^2-3x}{4}\)
M = \(\left(\frac{6x-x+3-5x-15}{\left(x+3\right)\left(x-3\right)}\right)\cdot\frac{x\left(x-3\right)}{4}\)
M = \(\frac{-12.x\left(x-3\right)}{\left(x-3\right)\left(x+3\right).4}\)
M = \(-\frac{3x}{x+3}\)
b) Với x = 2 => M = \(-\frac{3.2}{3+2}=-\frac{6}{5}\)
\(ĐKXĐ:x\ne\pm3\)
\(P=\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(\Leftrightarrow P=\left(\frac{x^2-3x}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(\Leftrightarrow P=\frac{\left(x^2-3x\right)+3\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x^2+9\right)}:\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)
\(\Leftrightarrow P=\frac{1}{x+3}:\frac{x-3}{x^2+9}\)
\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x-3\right)}\)
1)
ĐKXĐ: x\(\ne\)3
ta có :
\(\frac{x^2-6x+9}{2x-6}=\frac{\left(x-3\right)^2}{2\left(x-3\right)}=\frac{x-3}{2}\)
để biểu thức A có giá trị = 1
thì :\(\frac{x-3}{2}\)=1
=>x-3 =2
=>x=5(thoả mãn điều kiện xác định)
vậy để biểu thức A có giá trị = 1 thì x=5
1)
\(A=\frac{x^2-6x+9}{2x-6}\)
A xác định
\(\Leftrightarrow2x-6\ne0\)
\(\Leftrightarrow2x\ne6\)
\(\Leftrightarrow x\ne3\)
Để A = 1
\(\Leftrightarrow x^2-6x+9=2x-6\)
\(\Leftrightarrow x^2-6x-2x=-6-9\)
\(\Leftrightarrow x^2-8x=-15\)
\(\Leftrightarrow x=3\) (loại vì không thỏa mãn ĐKXĐ)
ĐKXĐ \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
\(M=\frac{\left(x-3\right)^2}{2x\left(x-3\right)}\left(1-\frac{6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\frac{x-3}{2x}\left(1-\frac{6}{x-3}\right)\)
\(=\frac{x-3}{2x}.\frac{x-9}{x-3}=\frac{x-9}{2x}\)
\(M=\frac{\left(x-3\right)^2}{2x^2-6x}\left(1-\frac{6x+18}{x^2-9}\right)\left(x\ne\pm3;x\ne0\right)\)
\(\Leftrightarrow M=\frac{\left(x-3\right)^2}{2x\left(x-3\right)}\left(1-\frac{6\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right)\)
\(\Leftrightarrow M=\frac{x-3}{2x}\cdot\left(1-\frac{6}{x-3}\right)\)
\(\Leftrightarrow M=\frac{x-3}{2x}\cdot\frac{x-9}{x-3}\)
\(\Leftrightarrow M=\frac{x-9}{2x}\)
Vậy với \(x\ne\pm3;x\ne0\)thì \(M=\frac{x-9}{2x}\)
\(1,\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\frac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}=\frac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\frac{x^3+y^3}{x\left(x^3-y^3\right)}\)
\(2,=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a+c-b\right)}=\frac{a+b-c}{a+c-b}\)
pt thành nhân tử là ra
Trả lời:
a, \(A=\frac{x^2-9}{x^2-6x+9}=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\frac{x+3}{x-3}\)
b, \(B=\frac{9x^2-16}{3x^2-4x}=\frac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\frac{3x+4}{x}\)
c, \(C=\frac{x^2+4x+4}{2x+4}=\frac{\left(x+2\right)^2}{2\left(x+2\right)}=\frac{x+2}{2}\)
d, \(D=\frac{2x-x^2}{x^2-4}=\frac{x\left(2-x\right)}{\left(x-2\right)\left(x+2\right)}=-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=-\frac{x}{x+2}\)
e, \(E=\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x-2}\)
\(\text{GIẢI :}\)
\(A=\left(\frac{x-2}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\right):\frac{2x-2}{x}\)
\(=\left(\frac{\left(x-2\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\right):\frac{2x-2}{x}\)
\(=\frac{x^2-3x-2x+6-x^2+9}{x\left(x-3\right)}:\frac{2x-2}{x}\)
\(=\frac{-5x+15}{x\left(x-3\right)}\cdot\frac{x}{2x-2}\)
\(=\frac{-5\left(x-3\right)}{x\left(x-3\right)}\cdot\frac{x}{2x-2}=\frac{-5}{2x-2}\).