Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a + b)2 – (a – b)2
= [(a + b) – (a – b)].[(a + b) + (a – b)]
(Áp dụng HĐT (3) với A = a + b; B = a – b)
= 2b.2a
= 4ab
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
Ta có: (a+b+c)2 +(a+b-c)2-2(a+b)2
- =a2+b2+c2+2ab+2ac+2bc+a2+b2+c2+2ab-2ac-2bc-2(a2+2ab+b2)
- =2a2+2b2+2c2+4ab+(2ac-2ac)+(2bc-2bc)-2a2-4ab-2b2
- =(2a2-2a2)+(2b2-2b2)+(4ab-4ab)+c2
- =c2
Ở chỗ (a+b+c)2 bạn có thể tách ra thành (a+b+c)(a+b+c) rồi nhân chúng lại, tương tự với (a+b-c)2 và ở (a+b)2 bạn dùng hằng đẳng thức nhé!
bài tớ và kết bạn nhé!! :))
Ta có
(a+b+c)2+(b+c-a)2+(c+a-b)2+(a+b-c)2= [(a+b)+c]2+[(b-a)+c]2+[(a-b)+c]2+[(a+b)-c]
=(a+b)2+2c(a+b)+c2+(b-a)2+2c(b-a)+c2+(a-b)2+2c(a-b)+c2+(a+b)2-2c(a+b)+c2
=2(a+b)2+2(a-b)2+4c2( vì (a-b)2=(b-a)2)
\(\left(a+b\right)^2-\left(a-b\right)^2\)
\(=\left(a+b+a-b\right)\left(a+b-a+b\right)\)
\(=2a.2b=4ab\)