Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+\dfrac{1}{2}x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)
a: \(\Leftrightarrow5x\left(x^2-6x+9\right)-5\left(x^3-3x^2+3x-1\right)+15x^2-60-5=0\)
\(\Leftrightarrow5x^3-30x^2+45x-5x^3+15x^2-15x+5+15x^2-65=0\)
\(\Leftrightarrow30x-60=0\)
hay x=2
b: \(\Leftrightarrow x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1-3x^2=42\)
\(\Leftrightarrow9x^3+6x^2+27x+28-9x^3-6x^2-x=42\)
=>26x=14
hay x=7/13
a) \(A_4=\left(x^2-3x+5\right)^2+7x\cdot\left(x^2-3x+5\right)+12x^2\)
\(=\left(x^2-3x+5\right)^2+4x\cdot\left(x^2-3x+5\right)+3x\left(x^2-3x+5\right)+12x^2\)
\(=\left(x^2-3x+5\right)\left(x^2-3x+5+4x\right)+3x\left(x^2-3x+5+4x\right)\)
\(=\left[\left(x^2-3x+5\right)+3x\right]\cdot\left(x^2-3x+5+4x\right)\)
\(=\left(x^2-3x+5+3x\right)\left(x^2+x+5\right)\)
\(=\left(x^2+5\right)\left(x^2+x+5\right)\)
\(A_5=2\left(x^2+5x-2\right)^2-7\left(x^2+5x-2\right)\left(x^3+3\right)+5\left(x^2+3\right)^2\)
Đặt \(x^2+5x-2=a;x^3+3=b\),Ta có:
\(2a^2-7ab+5b^2=2a^2-5ab-2ab+5b^2=a\left(2a-5b\right)-b\left(2a-5b\right)=\left(2a+5b\right)\left(a-b\right)\)
Thay \(x^2+5x-2=a;x^3+3=b\),ta có:
.......................
bn làm nốt nhé
b1:
câu a,f áp dụng a2-b2=(a-b)(a+b)
câu b,c áp dụng a3-b3=(a-b)(a2+ab+b2)
câu d: \(x^2+2xy+x+2y=x\left(x+2y\right)+\left(x+2y\right)=\left(x+1\right)\left(x+2y\right)\)
câu e: \(7x^2-7xy-5x+5y=7x\left(x-y\right)-5\left(x-y\right)=\left(7x-5\right)\left(x-y\right)\)
câu g xem lại đề
DO khong co dieu kien cua x nen ban hay lay x la mot so tu nhien bat ki
giả sử lấy x=1 thì ta có thể dễ dàng tính được tổng bằng 4^5=1024
a. Thay \(x_0=2\) vào phương trình, ta được:
\(2^2-3.2+7-1-2.2=8\ne0\)
\(\Rightarrow x_0=2\) không phải là nghiệm của pt
b. Thay \(x_0=-2\) vào phương trình, ta được:
\(\left(-2\right)^2-3.\left(-2\right)-10=0\)
\(\Rightarrow x_0=-2\) là nghiệm của pt
c. Thay \(x_0=2\) vào phương trình, ta được:
\(2^2-3.2+4-2.2+2=0\)
\(\Rightarrow x_0=2\) là nghiệm của pt
d. Thay \(x_0=-1\) vào phương trình, ta được:
\(\left(-1+1\right)\left(-1-2\right)\left(-1-5\right)=0\)
\(\Rightarrow x_0=-1\) là nghiệm của pt
e. Thay \(x_0=-1\) vào phương trình, ta được:
\(2.\left(-1\right)^2+3.\left(-1\right)+1=0\)
\(\Rightarrow x_0=-1\) là nghiệm của pt
f. Thay \(x_0=5\) vào phương trình, ta được:
\(4.5^2-3.5-2.5+1=76\ne0\)
\(\Rightarrow x_0=5\) không là nghiệm của pt
Câu a :
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
Câu b :
\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)
\(\Leftrightarrow3x^2+26x=0\)
\(\Leftrightarrow x\left(3x+26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+26=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)
a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\rightarrow x^3-2x^2+4x+2x^2-4x^2+8-x^3-2x=15\)
\(\rightarrow2x+8=15\)
\(\rightarrow2x=15-8=7\)
\(\Rightarrow x=7:2=3,5\)
Do ko có t/gian nên ko kịp lm câu b
bt lam ko