Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5xy.\sqrt{\frac{25x^2}{y^6}}=5xy.\sqrt{\frac{5^2x^2}{\left(y^3\right)^2}}=5xy.\sqrt{\frac{\left(5x\right)^2}{\left(y^3\right)^2}}5xy.\sqrt{\left(\frac{5x}{y^3}\right)^2}=5xy.\frac{5x}{y^3}=\frac{5^2x^2}{y^2}=\frac{\left(5x\right)^2}{y^2}=\left(\frac{5x}{y}\right)^2\)
Chúc bạn học tốt
5xy.\(\sqrt{\frac{25x^2}{y^6}}\)
=5xy.\(\frac{\left|5x\right|}{\left|y^3\right|}\){x<0 nên |5x|=-5x
=\(\orbr{\begin{cases}5xy.\frac{-5x}{y^3}\\5xy.\frac{-5x}{-y^3}\end{cases}}\)
=\(\orbr{\begin{cases}\frac{-25x^2}{y^3}\\\frac{25x^2}{y^3}\end{cases}}\)
A) \(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\)
\(\Leftrightarrow\dfrac{3}{2}\sqrt{x-1}=6\)
\(\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\)
\(\Leftrightarrow x=17\)
Vậy, x=17
A: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)
=>5/2*căn x-1-căn x-1=6
=>3/2*căn x-1=6
=>căn x-1=4
=>x-1=16
=>x=17
B:
a: ĐKXĐ: x>=0; x<>1
b: Sửa đề: \(A=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}\)
=căn x-1+x-căn x+1
=x
b: B=căn 49a^2+3a
=|7a|+3a
=7a+3a(a>=0)
=10a
c: C=căn16a^4+6a^2
=4a^2+6a^2
=10a^2
d: \(D=3\cdot3\cdot\sqrt{a^6}-6a^3=6\cdot\left|a^3\right|-6a^3\)
TH1: a>=0
D=6a^3-6a^3=0
TH2: a<0
D=-6a^3-6a^3=-12a^3
e: \(E=3\sqrt{9a^6}-6a^3\)
\(=3\cdot\sqrt{\left(3a^3\right)^2}-6a^3\)
=3*3a^3-6a^3(a>=0)
=3a^3
f: \(F=\sqrt{16a^{10}}+6a^5\)
\(=\sqrt{\left(4a^5\right)^2}+6a^5\)
=-4a^5+6a^5(a<=0)
=2a^5
1) \(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{4-2\sqrt{3}}=\sqrt{3}+1-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}+1-\sqrt{3}+1=2\)
2) \(\dfrac{3}{5}\sqrt{25x-50}-\sqrt{x-2}=6\left(đk:x\ge2\right)\)
\(\Leftrightarrow3\sqrt{x-2}-\sqrt{x-2}=6\)
\(\Leftrightarrow2\sqrt{x-2}=6\)
\(\Leftrightarrow\sqrt{x-2}=3\)
\(\Leftrightarrow x-2=9\Leftrightarrow x=11\left(tm\right)\)
rút gọn biểu thức
\(D=\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}}\)
rút gọn biểu thức
\(D=\sqrt{\frac{5+2\sqrt{6}}{5-2\sqrt{6}}}+\sqrt{\frac{5-2\sqrt{6}}{5+2\sqrt{6}}}\)
\(D=\sqrt{\frac{\left(5+2\sqrt{6}\right)^2}{25-24}}+\sqrt{\frac{\left(5-2\sqrt{6}\right)^2}{25-24}}=5+2\sqrt{6}+5-2\sqrt{6}=10\)
\(Q=\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\left(dk:x\ge0,x\ne4\right)\\ =\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{2\left(2-\sqrt{x}\right)+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{4-2\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{-3\sqrt{x}+6}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{-3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{3}{\sqrt{x}+2}\)
\(b,Q=\dfrac{6}{5}\Leftrightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{6}{5}\Rightarrow15-6\left(\sqrt{x}+2\right)=0\Rightarrow15-6\sqrt{x}-12=0\)
\(\Rightarrow-6\sqrt{x}=-3\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\left(tm\right)\)
Vậy \(x=\dfrac{1}{4}\)thỏa mãn đề bài.
\(C=\dfrac{\sqrt{y^3}-1}{y+\sqrt{y}+1}-\dfrac{y+3\sqrt{y}+2}{\sqrt{y}+1}\)
\(C=\dfrac{\sqrt{y^3}-1^3}{y+\sqrt{y}+1}-\dfrac{y+\sqrt{y}+2\sqrt{y}+2}{\sqrt{y}+1}\)
\(C=\dfrac{\left(\sqrt{y}+1\right)\left[\left(\sqrt{y}\right)^2+\sqrt{y}\cdot1+1\right]}{y+\sqrt{y}+1}-\dfrac{\left(\sqrt{y}+1\right)\left(\sqrt{y}+2\right)}{\sqrt{y}+1}\)
\(C=\dfrac{\left(\sqrt{y}+1\right)\left(y+\sqrt{y}+1\right)}{y+\sqrt{y}+1}-\left(\sqrt{y}+2\right)\)
\(C=\sqrt{y}+1-\sqrt{y}-2\)
\(C=-3\)
\(C=\dfrac{\left(\sqrt{y}-1\right)\left(y+\sqrt{y}+1\right)}{y+\sqrt{y}+1}-\dfrac{\left(\sqrt{y}+1\right)\left(\sqrt{y}+2\right)}{\sqrt{y}+1}\)
\(=\sqrt{y}-1-\sqrt{y}-2=-3\)
5xy\(\sqrt{\frac{25x^2}{y^6}}\)= 5xy ./\(\frac{5x}{y^3}\)/ = \(\orbr{\begin{cases}5xy.\frac{-5x}{y^3}\\5xy.\frac{5x}{y^3}\end{cases}}\)=\(\orbr{\begin{cases}\frac{-25x^2}{y^2}\\\frac{25x^2}{y^2}\end{cases}}\)
bang 12 hoac 49 nha minh ko biet no dung hay ko