Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x(x – y) + y(x – y)
= x.x – x.y + y.x – y.y
= x2 – xy + xy – y2
= x2 – y2 + (xy – xy)
= x2 – y2
a: ta có: \(x\left(x-y\right)+y\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)\)
\(=x^2-y^2\)
b: Ta có: \(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
\(=x^n+x^{n-1}\cdot y-x^{n-1}\cdot y-y^n\)
\(=x^n-y^n\)
a) x(x – y) + y(x – y) = x2 – xy + yx – y2 = x2 – xy + xy – y2 = x2 – y2
b) xn–1(x + y) – y( xn–1 + yn–1 ) = xn + xn–1y – yxn–1 – yn
= xn + xn–1y – xn–1y – yn = xn - yn
a) x (x - y) + y (x - y) = x2 – xy+ yx – y2
= x2 – xy+ xy – y2
= x2 – y2
b) xn – 1 (x + y) – y(xn – 1 + yn – 1) =xn+ xn – 1y – yxn – 1 - yn
= xn + xn – 1y - xn – 1y - yn
= xn – yn.
xn - 1(x + y) - y(xn - 1 + yn - 1)
= xn - x + y - yxn - y2 n - 1
\(x^{n-1}\left(x+y\right)-y\left(x^{n-1}+y^{n-1}\right)\)
=\(x^n+x^{n-1}y-x^{n-1}y-y^n\)
=\(x^n-y^n\)
\(x\left(x-y\right)+y\left(x-y\right)\)
\(=x.x-x.y+y.x-y.y\)
\(=x^2-xy+yx-y^2\)
=\(x^2-y^2\)
Ta có N = 2 x n ( 3 x n + 2 – 1 ) – 3 x n + 2 ( 2 x n – 1 )
N = 2 x n ( 3 x n + 2 – 1 ) – 3 x n + 2 ( 2 x n – 1 )
= 2 x n .3 x n + 2 − 2 x n .1 − 3 x n + 2 .2 x n − 3 x n + 2 . − 1
= 6 x n + n + 2 – 2 x n – 6 . x n + 2 + n + 3 x n + 2 = 6 x 2 n + 2 – 6 x 2 n + 2 – 2 x n + 3 x n + 2 = – 2 x n + 3 x n + 2
Vậy N = – 2 x n + 3 x n + 2
Đáp án cần chọn là: C
\(=-x^2y^3\cdot2x^{n-2}y^n+x^2y^3\cdot3x^ny^{n-3}-x^2y^3\cdot x^{n-2}y^{n-3}\)
\(=-2x^ny^{n+3}+3x^{n+2}y^n-x^ny^n\)
5 (3xn+1 - yn-1) + 3 (xn+1 + 5yn-1) - 4 (- xn+1 - 2yn-1)
=> 15xn+1 - 5yn-1 + 3xn+1 + 15yn-1 + 4xn+1 + 8yn-1
=> 22xn+1 + 18yn-1.