Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{\sqrt{2}\left(2\sqrt{2}+3\right)+2\sqrt{2}-3}{-1}\)
\(=\dfrac{4+3\sqrt{2}+2\sqrt{2}-3}{-1}=-1-5\sqrt{2}\)
b: \(=\dfrac{1}{\sqrt{10}+\sqrt{6}}-\dfrac{1}{\sqrt{10}-\sqrt{6}}\)
\(=\dfrac{\sqrt{10}-\sqrt{6}-\sqrt{10}-\sqrt{6}}{4}=\dfrac{-2\sqrt{6}}{4}=-\dfrac{\sqrt{6}}{2}\)
c: \(\dfrac{-2}{3\sqrt{8}}+\dfrac{1}{3-2\sqrt{2}}\)
\(=\dfrac{-2\left(3-2\sqrt{2}\right)+6\sqrt{2}}{6\sqrt{2}\left(3-2\sqrt{2}\right)}=\dfrac{-6+4\sqrt{2}+6\sqrt{2}}{6\sqrt{2}\left(3-2\sqrt{2}\right)}\)
\(=\dfrac{10\sqrt{2}-6}{6\sqrt{2}\left(3-2\sqrt{2}\right)}=\dfrac{10-3\sqrt{2}}{6\left(3-2\sqrt{2}\right)}=\dfrac{18+11\sqrt{2}}{6}\)
Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)
=1
2:
ĐKXĐ: x>=3
\(\Leftrightarrow\sqrt{x-3+2\cdot\sqrt{x-3}\cdot\sqrt{3}+3}+\sqrt{x-3-2\cdot\sqrt{x-3}\cdot\sqrt{3}+3}=2\sqrt{3}\)
=>\(\left|\sqrt{x-3}+\sqrt{3}\right|+\left|\sqrt{x-3}-\sqrt{3}\right|=2\sqrt{3}\)
\(\Leftrightarrow\sqrt{x-3}+\sqrt{3}+\left|\sqrt{x-3}-\sqrt{3}\right|=2\sqrt{3}\)
\(\Leftrightarrow\sqrt{x-3}+\left|\sqrt{x-3}-\sqrt{3}\right|=\sqrt{3}\)(1)
TH1: x>=6
(1) trở thành \(\sqrt{x-3}+\sqrt{x-3}-\sqrt{3}=\sqrt{3}\)
=>\(2\sqrt{x-3}=2\sqrt{3}\)
=>x-3=3
=>x=6(nhận)
TH2: 3<=x<6
Phương trình (1) sẽ là;
\(\sqrt{x-3}+\sqrt{3}-\sqrt{x-3}=\sqrt{3}\)
=>\(\sqrt{3}=\sqrt{3}\)(luôn đúng)
1:
\(A^2=8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{8^2-\left(2\sqrt{10+2\sqrt{5}}\right)^2}\)
\(=16+2\cdot\sqrt{64-4\cdot\left(10+2\sqrt{5}\right)}\)
\(=16+2\cdot\sqrt{24-8\sqrt{5}}\)
\(=16+2\cdot\sqrt{20-2\cdot2\sqrt{5}\cdot2+4}\)
\(=16+2\cdot\sqrt{\left(2\sqrt{5}-2\right)^2}\)
\(=16+2\cdot\left(2\sqrt{5}-2\right)=12+4\sqrt{5}\)
\(=10+2\cdot\sqrt{10}\cdot\sqrt{2}+2\)
\(=\left(\sqrt{10}+\sqrt{2}\right)^2\)
=>\(A=\sqrt{10}+\sqrt{2}\)
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
a/ \(\sqrt{2}+\sqrt{6}\)
b/ Sửa đề:
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}=1\)
c/ \(1+\sqrt{2}+\sqrt{5}\)