Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{8-2\sqrt{7}}-\sqrt{23-8\sqrt{7}}=\) \(\sqrt{1-2\sqrt{7}+7}-\sqrt{7-2.4.\sqrt{7}+16}\)
\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(\sqrt{7}-4\right)^2}\)
\(=\sqrt{7}-1-\left(-\sqrt{7}+4\right)\)
\(=\sqrt{7}-1+\sqrt{7}-4\)\(=2\sqrt{7}-5\)
chúc bn học tốt
=\(\sqrt{\left(\sqrt{7}-1\right)^2}\)- \(\sqrt{\left(4-\sqrt{7}\right)^2}\)
= \(\sqrt{7}\)- 1 - 4 + \(\sqrt{7}\)
= \(2\sqrt{7}\)-5
đ/á ra hơi kì
#mã mã#
a, \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
b, \(\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
\(=\sqrt{2+2\sqrt{2}+1}+\sqrt{4-2.2\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(=\sqrt{2}+1+2-\sqrt{2}=3\)
câu 1 đã làm
câu 2
\(\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
\(\Leftrightarrow\sqrt{2}+1+\sqrt{2}-2\Leftrightarrow2\sqrt{2}-1\)
\(A=\sqrt{4+\sqrt{7}}-\sqrt{4+\sqrt{7}}\Leftrightarrow\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(\Leftrightarrow\sqrt{2}A=\sqrt{\sqrt{7}^2+2\sqrt{7}+1}-\sqrt{\sqrt{7}^2+2\sqrt{7}+1}\)
\(\Leftrightarrow\sqrt{2}A=\sqrt{7}+1-\sqrt{7}-1=0\)
\(\Leftrightarrow A=0\)
\(\left(\sqrt{8+3\sqrt{7}}+\sqrt{8-3\sqrt{7}}\right)^2\)
\(=8+3\sqrt{7}+8-3\sqrt{7}+2\sqrt{64-63}\)
\(=16+2=18\)
\(\sqrt{8-2\sqrt{7}}=\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}-1\)
a, \(\sqrt{3-\sqrt{5}}+\sqrt{7-3\sqrt{5}}\)\(=\sqrt{\frac{1}{2}.\left(6-2\sqrt{5}\right)}\)\(+\sqrt{\frac{1}{2}.\left(14-2.3\sqrt{5}\right)}\)
\(=\sqrt{\frac{1}{2}.\left(\sqrt{5}-1\right)^2}\)\(+\sqrt{\frac{1}{2}.\left(3-\sqrt{5}\right)^2}\)\(=\frac{\sqrt{2}}{2}.\left(\sqrt{5}-1\right)+\frac{\sqrt{2}}{2}.\left(3-\sqrt{5}\right)\)
\(=\frac{\sqrt{2}}{2}.2=\sqrt{2}\)
Câu b đề đúng ko bn
\(\sqrt{\frac{2}{8-3\sqrt{7}}}=\frac{2\left(8+3\sqrt{7}\right)}{\left(8-3\sqrt{7}\right)\left(8+3\sqrt{7}\right)}=2\left(8+3\sqrt{7}\right)\)
\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
= \(\sqrt{7}-1-\left(1+\sqrt{7}\right)\)
\(=\sqrt{7}-1-\sqrt{7}-1\)
= -2
Bạn ghi lại đề dùm
\(\sqrt{8-2\sqrt{7}-\left[\left(\sqrt{7}+1\right)^2\right]}\)
\(\sqrt{8-2\sqrt{7}-\sqrt{7}-1}\)
\(\Leftrightarrow\sqrt{7-\sqrt{7}}\)