K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\sqrt{x\sqrt{x^{1+\dfrac{1}{2}}}}:x^{\dfrac{5}{8}}\)

\(=\sqrt{x\cdot x^{\dfrac{1}{2}\cdot\dfrac{3}{2}}}:x^{\dfrac{5}{8}}\)

\(=\sqrt{x^{1+\dfrac{3}{4}}}:x^{\dfrac{5}{8}}\)

\(=x^{\dfrac{1}{2}\cdot\dfrac{7}{4}}:x^{\dfrac{5}{8}}=x^{\dfrac{7}{8}-\dfrac{5}{8}}=x^{\dfrac{1}{4}}=\sqrt[4]{x}\)

=>A

HQ
Hà Quang Minh
Giáo viên
23 tháng 8 2023

\(A=\dfrac{x^{\dfrac{5}{4}}y+xy^{\dfrac{5}{4}}}{\sqrt[4]{x}+\sqrt[4]{y}}\\ =\dfrac{xy\left(x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}\right)}{x^{\dfrac{1}{4}}+y^{\dfrac{1}{4}}}\\ =xy\)

\(B=\left(\sqrt[7]{\dfrac{x}{y}\sqrt[5]{\dfrac{y}{x}}}\right)^{\dfrac{35}{4}}\\= \left(\sqrt[7]{\dfrac{x}{y}\cdot\left(\dfrac{x}{y}\right)^{-\dfrac{1}{5}}}\right)^{\dfrac{35}{4}}\\ =\left(\sqrt[7]{\left(\dfrac{x}{y}\right)^{\dfrac{4}{5}}}\right)^{\dfrac{35}{4}}\\ =\left[\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}}\right]^{\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^{\dfrac{4}{35}\cdot\dfrac{35}{4}}\\ =\left(\dfrac{x}{y}\right)^1\\ =\dfrac{x}{y}\)

13 tháng 5 2022

\(a,\) ta có : 

\(\Leftrightarrow\left\{{}\begin{matrix}A=\sqrt{3}+\sqrt{2^2.3}-\sqrt{3^2.3}-\sqrt{6^2}\\A=\sqrt{3}+2\sqrt{3}-3\sqrt{3}-6\\A=\sqrt{3}.\left(1+2-3\right)-6\\A=-6\end{matrix}\right.\)

\(\Rightarrow A=-6\) . vậy \(A=9\sqrt{5}\)

__________________________________________________________

\(b,\) với \(x>0\) và \(x\ne1\) . ta có :

\(B=\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\left(\sqrt{x}-1\right)+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\sqrt{x}+1+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow B=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow\) \(B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow B=\dfrac{4}{\sqrt{x}}\)

vậy với \(x>0\) \(;\) \(x\ne1\) thì \(B=\dfrac{4}{\sqrt{x}}\)

để \(B=2\) thì \(\dfrac{4}{\sqrt{x}}=2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)

vậy để \(B=2\) thì \(x=4\)

13 tháng 5 2022

c.ơn bn

a: \(A=\dfrac{x^{\dfrac{1}{3}}\cdot y^{\dfrac{1}{2}}+y^{\dfrac{1}{3}}\cdot x^{\dfrac{1}{2}}}{x^{\dfrac{1}{6}}+y^{\dfrac{1}{6}}}=\dfrac{x^{\dfrac{1}{3}}\cdot y^{\dfrac{1}{3}}\left(x^{\dfrac{1}{6}}+y^{\dfrac{1}{6}}\right)}{x^{\dfrac{1}{6}}+y^{\dfrac{1}{6}}}=x^{\dfrac{1}{3}}\cdot y^{\dfrac{1}{3}}=\left(xy\right)^{\dfrac{1}{3}}\)

b: \(B=\dfrac{x^{3+\sqrt{3}}}{y^2}\cdot\dfrac{x^{-\sqrt{3}-1}}{y^{-2}}=\dfrac{x^{3+\sqrt{3}-\sqrt{3}-1}}{y^{2-2}}=x^2\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

\({\left[ {{{\left( {\frac{1}{3}} \right)}^2}} \right]^{\frac{1}{4}}}.{\left( {\sqrt 3 } \right)^5} = {\left( {\frac{1}{3}} \right)^{2.\frac{1}{4}}}.{\left( {{3^{\frac{1}{2}}}} \right)^5} = {\left( {{3^{ - 1}}} \right)^{\frac{1}{2}}}{.3^{\frac{1}{2}.5}} = {3^{ - \frac{1}{2}}}{.3^{\frac{5}{2}}} = {3^{ - \frac{1}{2} + \frac{5}{2}}} = {3^2} = 9\)

Chọn D.

\(=\dfrac{xy\left(x^{\dfrac{1}{2}}+y^{\dfrac{1}{2}}\right)}{x^{\dfrac{1}{2}}+y^{\dfrac{1}{2}}}=xy\)

23 tháng 8 2023

\(A=\dfrac{x^{\dfrac{3}{2}}y+xy^{\dfrac{3}{2}}}{\sqrt{x}+\sqrt{y}}=\left(x+y\right).\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\).

\(N=\dfrac{xy\left(x^{\dfrac{1}{3}}+y^{\dfrac{1}{3}}\right)}{x^{\dfrac{1}{3}}+y^{\dfrac{1}{3}}}=xy\)

28 tháng 2 2020
https://i.imgur.com/v6W1QWU.jpg
28 tháng 2 2020

ai giup voi

18 tháng 8 2023

$\left(x^{\sqrt{2}}y\right)^{\sqrt{2}} = x^{\sqrt{2} \cdot \sqrt{2}}y^{\sqrt{2}} = x^2y^{\sqrt{2}}$

$x^2y^{\sqrt{2}} \cdot 9y^{-\sqrt{2}} = 9x^2y^{\sqrt{2}}y^{-\sqrt{2}} = 9x^2$