Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) a) \(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
b) \(x^2-6=\left(x-\sqrt{6}\right).\left(x+\sqrt{6}\right)\)
c) = \(x^2+2x.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)
d) = \(x^2-2x\sqrt{5}+\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)^2\)
\(5\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\frac{5}{2}}\right)^2+\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\frac{3}{2}}\right)^2\)
\(=\frac{5}{2}\left(\sqrt{4+2\sqrt{3}}+\sqrt{6-2\sqrt{5}}-\sqrt{5}\right)^2+\frac{1}{2}\left(\sqrt{4-2\sqrt{3}}+\sqrt{6+2\sqrt{5}}-\sqrt{3}\right)^2\)
\(=\frac{5}{2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{5}\right)^2+\frac{1}{2}\left(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{3}\right)^2\)
\(=\frac{5}{2}\left(\sqrt{3}+1+\sqrt{5}-1-\sqrt{5}\right)^2+\frac{1}{2}\left(\sqrt{3}-1+\sqrt{5}+1-\sqrt{3}\right)^2\)
\(=\frac{5}{2}\left(\sqrt{3}\right)^2+\frac{1}{2}\left(\sqrt{5}\right)^2=\frac{15}{2}+\frac{5}{2}=\frac{20}{2}=10\)
\(a,\sqrt{4x^4}+6x^2=2x^2+6x^2=8x^2\)
\(b,\sqrt{25a^4}-2a^2=5a^2-2a^2=3a^2\)
\(c,\sqrt{36a^4}+8a=6a^2+8a\)
\(d,\sqrt{\left(x-3\right)^4}-x^2+3x-1=\left(x-3\right)^2-x^2+3x-1=x^2-6x+9-x^2+3x-1=-3x+8\)
\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\cdot\dfrac{1}{\left(1+\sqrt{a}\right)^2}\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)
\( a)A = \dfrac{{a - \sqrt a - 6}}{{4 - a}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{a + 2\sqrt a - 3\sqrt a - 6}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 3} \right)}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 3}}{{\sqrt a - 2}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 2}}{{\sqrt a - 2}} = - 1 \)
\( b)B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{x - 1}}\\ B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{\sqrt x + 1 + \sqrt x - 1 - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \dfrac{2}{{\sqrt x + 1}} \)
\(B=5\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\dfrac{5}{2}}\right)^2+2\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\dfrac{3}{2}}\right)^2\)\(B=5\left(2+\sqrt{3}+3-\sqrt{5}-\dfrac{5}{2}\right)+2\left(2-\sqrt{3}+3+\sqrt{5}-\dfrac{3}{2}\right)\)
\(B=10+5\sqrt{3}+15-5\sqrt{5}-\dfrac{25}{2}+4-2\sqrt{3}+6+2\sqrt{5}-3\)
\(B=\dfrac{39}{2}-3\sqrt{5}+3\sqrt{3}\)
a) Ta có:
\(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}=-\sqrt{n}+\sqrt{n+1}\)
\(\Rightarrow A=...=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{48}+\sqrt{49}=-1+7=6\)
\(\frac{\left(\sqrt{A}+3\right)^2}{\sqrt{A}+3}=\frac{\left(\sqrt{A}+3\right)\left(\sqrt{A}+3\right)}{\sqrt{A}+3}=\sqrt{A}+3\)
Giải pt sau:
\(\sqrt{2x-1}\)- x =0
\(\sqrt{2x-1}\)+ x = 0