\(B=\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\left(1\le a\le2\right)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
12 tháng 7 2021

\(B=\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\)

\(=\sqrt{a-1+2\sqrt{a-1}+1}+\sqrt{a-1-2\sqrt{a-1}+1}\)

\(=\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\)

\(=\left|\sqrt{a-1}+1\right|+\left|\sqrt{a-1}-1\right|\)

\(=\sqrt{a-1}+1+1-\sqrt{a-1}\)(vì \(1\le a\le2\))

\(=2\).

28 tháng 1 2020

Đặt: \(a=\sqrt{2+x};b=\sqrt{2-x}\left(a,b\ge0\right)\)

\(\Rightarrow\hept{\begin{cases}a^2+b^2=4\\a^2-b^2=2x\end{cases}}\)

\(\Rightarrow A=\frac{\sqrt{2+ab}\left(a^3-b^3\right)}{4+ab}=\frac{\sqrt{2+ab}\left(a-b\right)\left(a^2+b^2+ab\right)}{4+ab}\)

\(\Rightarrow A=\frac{\sqrt{2+ab}\left(a-b\right)\left(4+ab\right)}{4+ab}=\sqrt{2+ab}\left(a-b\right)\)

\(\Rightarrow A\sqrt{2}=\sqrt{4+2ab}\left(a-b\right)\)

\(\Rightarrow A\sqrt{2}=\sqrt{\left(a^2+b^2+2ab\right)}\left(a-b\right)=\left(a+b\right)\left(a-b\right)\)

\(\Rightarrow A\sqrt{2}=a^2-b^2=2x\)

\(\Rightarrow A=x\sqrt{2}\)

15 tháng 8 2018

\(A=\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\\ =\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}\\ \\ =a+3+3-a\\ =6\)

\(B=\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\\ =\sqrt{\left(a-1\right)+2\sqrt{a-1}+1}+\sqrt{\left(a-1\right)-2\sqrt{a-1}+1}\\ =\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\\ =\sqrt{a-1}+1+1-\sqrt{a-1}\\ =2\)

27 tháng 11 2019

\(\hept{\begin{cases}-1\le x\le1\\2-\sqrt{1-x^2}\end{cases}\Rightarrow-1\le x\le1\left(^∗\right)}\)

Đặt : \(\hept{\begin{cases}\sqrt{1+x}=a\\\sqrt{1-x}=b\end{cases}\Rightarrow\hept{\begin{cases}a^2+b^2=2\\a,b\ge0\end{cases}}}\)

A tồn tại mọi x thuộc ( * )

\(A=\frac{\sqrt{1-ab}\left(a^3+b^3\right)}{2-ab}=\frac{\sqrt{a^2-2ab+b^2}\left(a+b\right)\left(a^2+b^2-ab\right)}{2-ab}\)

\(A=\frac{\sqrt{2}\sqrt{\left(a-b\right)^2}\left(a+b\right)\left(2-ab\right)}{\left(2-ab\right)}\) . Vói đk ( \(I\)\(A=\frac{\sqrt{2}}{2}!a-b!\left(a+b\right)\)

\(\orbr{\begin{cases}\hept{\begin{cases}a\ge b\Leftrightarrow0\le x\le1\\A=\frac{\sqrt{2}}{2}\left[\left(1+x\right)-\left(1-x\right)\right]=\frac{\sqrt{2}}{2}x\end{cases}}\\\hept{\begin{cases}a< b\Leftrightarrow-1\le x< 0\\A=\frac{-\sqrt{2}}{2}\left[\left(1+x\right)-\left(1-x\right)\right]=\frac{-\sqrt{2}}{2}x\end{cases}}\end{cases}}\)

\(\Rightarrow A=\frac{\sqrt{2}}{2}!x!\) . Với x thỏa mãn điều kiện ( * )

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

29 tháng 3 2020

\(ĐKXĐ:a>1\)

\(P=\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right)\cdot\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(\Leftrightarrow P=\left(\frac{\sqrt{a}+2}{\left(\sqrt{a}+1\right)^2}-\frac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\cdot\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(\Leftrightarrow P=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\cdot\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(\Leftrightarrow P=\frac{a+\sqrt{a}-2-a+\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(\Leftrightarrow P=\frac{2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(\Leftrightarrow P=\frac{2}{a-1}\)

31 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}a>0\\a\ne1\end{cases}}\)

Ta có :

 \(P=\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right).\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\left(\frac{\sqrt{a}+2}{\left(\sqrt{a}+1\right)^2}-\frac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\left(\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\left(\frac{\left(a+\sqrt{a}-2\right)-\left(a-\sqrt{a}-2\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\right).\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\frac{2\sqrt{a}}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}+1}{\sqrt{a}}\)

\(=\frac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\frac{2}{a-1}\)

Vậy \(P=\frac{2}{a-1}\left(a>0;a\ne1\right)\)

17 tháng 8 2015

1)))))))

\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2}{\sqrt{ab}}:\frac{\left(\sqrt{b}-\sqrt{a}\right)^2}{\left(\sqrt{ab}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2}{\sqrt{ab}}.\frac{\left(\sqrt{ab}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{2\sqrt{ab}-a-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)

\(=\frac{-\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\)

 

17 tháng 8 2015

\(\text{VT}=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)=\left(1+\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}.\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x=\text{VP(điều phải chứng minh)}\)

9 tháng 7 2017

\(\sqrt{a-2+4\sqrt{a-2}+4}+\sqrt{a-2-4\sqrt{a-2}+4}\)=\(\sqrt{\left(\sqrt{a-2}+2\right)^2}+\sqrt{\left(\sqrt{a-2}-2\right)^2}=\sqrt{a-2}+2+2-\sqrt{a-2}=4\) (do2<=a<=4)