Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.
Số số hạng: $(101-1):4+1=26$
$A=(101+1)\times 26:2=1326$
2/
$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$
$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$
$=(1+2+2^2)(1+2^3+2^6+2^9)$
$=7(1+2^3+2^6+2^9)\vdots 7$
a) \(A=1+2+2^2+...+2^{50}\)
\(\Rightarrow2A=2+2^2+...+2^{51}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)
b) \(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+...+3^{101}\)
\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)
\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)
c) \(C=5+5^2+...+5^{30}\)
\(\Rightarrow5C=5^2+5^3+...+5^{31}\)
\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)
\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)
d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)
\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)
\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)
\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)
`A=2^{0}+2^{1}+2^{2}+....+2^{99}`
`=(1+2+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8}+2^{9})+......+(2^{95}+2^{96}+2^{97}+2^{97}+2^{99})`
`=(1+2+2^{2}+2^{3}+2^{4})+2^{5}(1+2+2^{2}+2^{3}+2^{4})+.....+2^{95}(1+2+2^{2}+2^{3}+2^{4})`
`=31+2^{5}.31+....+2^{95}.31`
`=31(1+2^{5}+....+2^{95})\vdots 31`
\(A=2^0+2^1+2^2+2^3+2^4+2^5+2^6+...+2^{99}\)
\(=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)
A = 1 + 3 + 32 + 33 + ... + 3100
3A = 3 + 32 + 33 +34+ .... + 3101
3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)
2A = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100
2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)
2A = 3101 - 1
A = \(\dfrac{3^{101}-1}{2}\)
a: 2A=2^2+2^3+...+2^21
=>A=2^21-2
b: B=2+2^2+...+2^100
=>2B=2^2+2^3+...+2^101
=>B=2^101-2
c: C=3+3^2+...+3^10
=>3C=3^2+3^3+...+3^11
=>2C=3^11-3
=>C=(3^11-3)/2
`A = 2 + 2^2 + ... + 2^20`
`=> 2A = 2^2 + 2^3 + ... +2^21`
`=> 2A-A = (2^2 + 2^3 + ... + 2^21) - (2 + 2^2 + ... +2^20)`
`=> A = 2^21 - 2`
`B = 2 + 2^2 + ... + 2^99 + 2^100`
`=>2B = 2^2 + 2^3 + ... + 2^100 + 2^101`
`=> 2B-B = (2^2 + 2^3 + ... + 2^101)- (2 + 2^2 + ... + 2^100)`
`=> B = 2^101 - 2`
`C = 3 + 3^2 + .... + 3^10`
`=>3C = 3^2 + 3^3 + ... +3^11`
`=>3C - C = (3^2 + 3^3 + ... +3^11) - (3 + 3^2 + .... + 3^10)`
`=> 2C = 3^11 - 3`
`=> C = (3^11 - 3)/2
15) $|-18| + (-12)=18-12=6$
16) $17+ |-33|=17+33=50$
17) $(– 20) + |-88|=-20+88=68$
18) $|-3| + |5|=3+5=8$
19) $|-37| + |15|=37+15=52$
20) $|-37| + (-|15|)=37-15=22$
21) $(-|-32|) + |5| 22)(-|-22|)+ (-|16|)=-32+5.22-22=-32+4.22=-32+88=56$
23) $(-23) + 13 + ( - 17) + 57=-23+13-17=-40+13=-23$
24) $14 + 6 + (-9) + (-14)=14+6-9-14=6-9=-3$
25) $(-123) +|-13|+ (-7)=-123+13-7=-110-7=-117$
26) $|0|+|45|+(-|-455)|+|-796|=0+45-455+796=-410+796=386$