Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\left(\sqrt{x}-3\right)^2+12\sqrt{x}}{3+\sqrt{x}}=\) \(\frac{x-6\sqrt{x}+9+12\sqrt{x}}{3+\sqrt{x}}\)
\(=\frac{x+6\sqrt{x}+9}{3+\sqrt{x}}\)
\(=\frac{\left(3+\sqrt{x}\right)^2}{3+\sqrt{x}}\)
\(=3+\sqrt{x}\)
\(\frac{\left(\sqrt{x}-3\right)^2+12\sqrt{x}}{3+\sqrt{x}}\left(x\ge0\right)=\frac{x-6\sqrt{x}+9+12\sqrt{x}}{3+\sqrt{x}}\)
\(=\frac{x+\sqrt{6}+9}{3+\sqrt{x}}=\frac{\left(\sqrt{x}+3\right)^2}{3+\sqrt{x}}=3+\sqrt{x}\left(x\ge0\right)\)
Ta có: 2\(\sqrt{ }\)a^2 -a =2a-a=a( vì \(\sqrt{ }\)a^2 =|a|=a)
Chúc bn hk tốtt!!
a: ĐKXĐ: \(\left\{{}\begin{matrix}a>=0\\a< >1\end{matrix}\right.\)
\(A=\dfrac{1}{2\left(\sqrt{a}+1\right)}-\dfrac{1}{2\left(\sqrt{a}-1\right)}+\dfrac{a^2+1}{a^2-1}\)
\(=\dfrac{\sqrt{a}-1-\sqrt{a}-1}{2\left(a-1\right)}+\dfrac{a^2+1}{a^2-1}\)
\(=\dfrac{-1}{a-1}+\dfrac{a^2+1}{a^2-1}\)
\(=\dfrac{-a-1+a^2+1}{\left(a-1\right)\left(a+1\right)}=\dfrac{a^2-a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{a+1}\)
b: Để A-1/3<0 thì \(\dfrac{a}{a+1}-\dfrac{1}{3}< 0\)
=>3a-a-1<0
=>2a-1<0
hay 0<a<1/2
\(A=\dfrac{x-9}{3+\sqrt{x}}\) (đề như này pk?)
a) Để A có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\3+\sqrt{x}\ne0\left(lđ\right)\end{matrix}\right.\)\(\Rightarrow x\ge0\)
b) \(A=\dfrac{x-9}{3+\sqrt{x}}=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{3+\sqrt{x}}=\sqrt{x}-3\)
c) Với x=0 (tmđk) thay vào A ta được: \(A=\sqrt{0}-3=-3\)
Với x=-1 (ktm đk)
Với x=16 (tmđk) thay vào A ta được: \(A=\sqrt{16}-3=1\)
d) \(A\in Z\Leftrightarrow\sqrt{x}-3\in Z\Leftrightarrow\sqrt{x}\in Z\) \(\Leftrightarrow\) x là số chính phương
b: \(B=\left(1+\cos\alpha\right)\left(1-\cos\alpha\right)-\sin^2\alpha\)
\(=1-\cos^2\alpha-\sin^2\alpha\)
=0
nhanh mai mk thi rồi đó
6+sqrt(3) sqrt: căng