K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

\(A=\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

=>  \(3A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

  \(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

  \(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

  \(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)

=>  \(A=\frac{2^{32}-1}{3}\)

11 tháng 8 2018

\(B=\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\frac{\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\)

\(=\frac{\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\)

\(=\frac{\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)}{3}\)

\(=\frac{\left(2^{16}-1\right)\left(2^{16}+1\right)}{3}\)

\(=\frac{2^{32}-1}{3}\)

Ta có: \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\dfrac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)}{2}\)

\(=\dfrac{3^{32}-1}{2}\)

Rút gọn: (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A=(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

A=2(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)

A=(3-1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A=(32-1)(32 + 1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A=(34-1)(34 + 1)(38 + 1)(316 + 1)(332 + 1)
A=(38-1)(38 + 1)(316 + 1)(332 + 1)
A=(316-1)(316 + 1)(332 + 1)
A=(332 - 1)(332 + 1)
A=364-1
=>A=(364-1) /2

9 tháng 12 2018

Đặt \(A=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

Ta có:

  \(3=2^2-1\)

Do đó:

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^{16}+1\right)\)

Liên tiếp áp dụng hằng đẳng thức \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)ta được:

\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)

9 tháng 12 2018

=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)

=(2^4-1)(2^4+1)(2^8+1)(2^16+1)

=(2^8-1)(2^8+1)(2^16+1)

=(2^16-1)(2^16+1)

=2^32

                                                           kb và k cho mk nhé!!!!!!!!!!    ^_^ ^_^

30 tháng 7 2018

\(P=12.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)

\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)

\(=\frac{5^{32}-1}{2}\)

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:
$H=(x^3-3x^2+3x-1)-(x^3+8)+3(x^2-16)$

$=x^3-3x^2+3x-1-x^3-8+3x^2-48$

$=(x^3-x^3)+(-3x^2+3x^2)+3x+(-1-8-48)$

$=3x-57=3.\frac{-1}{2}-57=\frac{-117}{2}$

11 tháng 12 2023

Cô giải bài em mới đăng với nha cô thanks cô nhiều ạ