Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt A=\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
<=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)=\(\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)
= \(\sqrt{7}+1-\sqrt{7}+1=2\)
=> \(A=\frac{2}{\sqrt{2}}\sqrt{2}\)
b) Ta đặt \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
=> \(B^2=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)
= \(8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{5-2\sqrt{5}+1}\)=\(8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}\)
= \(5+2\sqrt{5}+1=\left(\sqrt{5}+1\right)^2\)
=> B=\(\sqrt{5}+1\)
c) Ta xét \(A=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}\)
=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{3}\cdot\sqrt{5}}+\sqrt{8-2\sqrt{3}\cdot\sqrt{5}}\)
= \(\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
= \(\sqrt{3}+\sqrt{5}+\sqrt{5}-\sqrt{3}\)= \(2\sqrt{5}\)
=> A=\(\sqrt{5}\)
Ta có : \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
= \(A-\sqrt{6-2\sqrt{5}}\)
= \(\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1\)=1
a,A.√2= √(4+2√3)-√(4-2√3)
= √(1+√3)2 -√( √3 -1)2
= 1+√3-√3+1= 2
=> A= 2/√2=√2
B2= (4+√15)2.(4-√15).(√10-√6)2
= (4+√15).1.(16-4√15)
= (4+√15).(4-√15).4
= 4
=> B = √4 = 2
\(A=\sqrt{4+\sqrt{7}}-\sqrt{4+\sqrt{7}}\Leftrightarrow\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(\Leftrightarrow\sqrt{2}A=\sqrt{\sqrt{7}^2+2\sqrt{7}+1}-\sqrt{\sqrt{7}^2+2\sqrt{7}+1}\)
\(\Leftrightarrow\sqrt{2}A=\sqrt{7}+1-\sqrt{7}-1=0\)
\(\Leftrightarrow A=0\)
a) \(A=\sqrt{4-\sqrt{15}}-\sqrt{2+\sqrt{3}}\)
\(\Rightarrow\)\(\sqrt{2}A=\sqrt{8-2\sqrt{15}}-\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\sqrt{5}-\sqrt{3}-\left(\sqrt{3}+1\right)=\sqrt{5}-1\)
\(\Rightarrow\)\(A=\frac{\sqrt{5}-1}{\sqrt{2}}\)
b) tương tự câu a
c) \(\sqrt{6+2\sqrt{5-\sqrt{13+4\sqrt{3}}}}-\sqrt{6-2\sqrt{5+\sqrt{13-4\sqrt{3}}}}\)
\(=\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}-\sqrt{6-2\sqrt{5+\sqrt{\left(\sqrt{12}-1\right)^2}}}\)
\(=\sqrt{6+2\sqrt{5-\left(\sqrt{12}+1\right)}}-\sqrt{6-2\sqrt{5+\left(\sqrt{12}-1\right)}}\)
\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}-\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}-\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}-\sqrt{6-2\left(\sqrt{3}+1\right)}\)
\(=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)=2\)
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\)
= \(2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(2-\sqrt{3}+\sqrt{3}-1\) = \(1\)
b) \(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
= \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3-2\sqrt{6}\right)^2}\)
= \(3-\sqrt{6}+2\sqrt{6}-3\) = \(\sqrt{6}\)
c) \(\left(15\sqrt{200}-3\sqrt{450}+2\sqrt{50}\right):\sqrt{10}\)
= \(\dfrac{15\sqrt{200}}{\sqrt{10}}-\dfrac{3\sqrt{450}}{\sqrt{10}}+\dfrac{2\sqrt{50}}{\sqrt{10}}\)
= \(15\sqrt{20}-3\sqrt{45}+2\sqrt{5}\)
= \(30\sqrt{5}-9\sqrt{5}+2\sqrt{5}\) = \(23\sqrt{5}\)
A=\(\sqrt{5-2\sqrt{3}.\sqrt{5}+3}-\sqrt{5+2\sqrt{5}.\sqrt{3}+3}\)
A=\(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
A=\(\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
A=\(-2\sqrt{3}\)
\(A=\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
\(A=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)
\(A=\left|\sqrt{5}-\sqrt{3}\right|-\sqrt{5}-\sqrt{3}\)
\(A=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}\)
\(A=-2\sqrt{3}\)
cau a,b,c thay no co chung 1 dang do la
\(\sqrt[3]{a+m}+\sqrt[3]{a-m}\)
dang nay co 2 cach
C1: nhanh kho nhin de sai
VD: cau B
\(B^3=40+3\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}\left(B\right)\)
B^3=40+3(2)(B)
B^3=40+6B
B=4
C2: hoi dai nhung de nhin
dat \(a=\sqrt[3]{20+14\sqrt{2}};b=\sqrt[3]{20-14\sqrt{2}}\)
de thay B=a+b
ab=2
a^3+b^3=40
suy ra B^3=a^3+b^3+3ab(a+b)
B^3=40+6B
B=4
giai tuong tu
con co cach nay nhung it su dung vi kho tim
C3: dua ve tong lap phuong
VD:cau B
\(20+14\sqrt{2}=\left(2+\sqrt{2}\right)^3\)
\(20-14\sqrt{2}=\left(2-\sqrt{2}\right)^3\)
de thay
B=4
cau d)
dung CT nay
\(\sqrt[m]{a}=\sqrt[m\cdot n]{\left(a\right)^n}\)
ap dung vao bai
\(\sqrt[3]{2\sqrt{3}-4\sqrt{2}}=\sqrt[6]{\left(2\sqrt{3}-4\sqrt{2}\right)^2}=\sqrt[6]{44-16\sqrt{6}}\)
nhanh vao
\(\sqrt[6]{\left(44-16\sqrt{6}\right)\left(44+16\sqrt{6}\right)}=\sqrt[6]{400}=\sqrt[3]{20}\)
\(=\dfrac{\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)