\(\left(\dfrac{2}{1+2x}+\dfrac{4x^2+1}{4x^2-1}-\dfrac{1}{1-2x}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

\(\left(\dfrac{2}{1+2x}+\dfrac{4x^2+1}{4x^2-1}-\dfrac{1}{1-2x}\right):\dfrac{2}{4x^2-1}\)

\(=\left(\dfrac{2\left(1-2x\right)}{\left(1+2x\right)\left(1-2x\right)}+\dfrac{-\left(4x^2+1\right)}{\left(1-2x\right)\left(1+2x\right)}-\dfrac{1\left(1+2x\right)}{\left(1+2x\right)\left(1-2x\right)}\right)\cdot\dfrac{4x^2-1}{2}\)

\(=\left(\dfrac{2-4x-4x^2-1-1-2x}{\left(1+2x\right)\left(1-2x\right)}\right)\cdot\dfrac{\left(1-2x\right)\left(1+2x\right)}{-2}\)

\(=\left(\dfrac{-4x^2-6x}{\left(1+2x\right)\left(1-2x\right)}\right)\cdot\dfrac{\left(1-2x\right)\left(1+2x\right)}{-2}\)

\(=\dfrac{-2x\left(2x+3\right)\left(1-2x\right)\left(1+2x\right)}{\left(1+2x\right)\left(1-2x\right)\cdot\left(-2\right)}\)

\(=\dfrac{x\left(2x+3\right)}{1}\)

\(=x\left(2x+3\right)\)

11 tháng 12 2018

Để A = 2 thì \(x\left(2x+3\right)=2=1\cdot2=2\cdot1=\left(-1\right)\cdot\left(-2\right)=\left(-2\right)\cdot\left(-1\right)\)

Ta có bảng :

x 1 2 -1 -2
2x+3 2 1 -2 -1
x1 1 2 -1 -2
x2 -0,5 -1 -2,5 -2

Ta thấy chỉ có x = -2 và 2x + 3 = -1 thì x1 và x2 mới bằng nhau và bằng -2

Vậy x = -2 thì A = 2

18 tháng 5 2018

Giúp với

4 tháng 8 2018

a) điều kiện : \(x\ne\pm\dfrac{y}{2}\)

ta có : \(P=\left(\dfrac{1}{2x-y}+\dfrac{3y}{y^2-4x^2}-\dfrac{2}{2x+y}\right):\left(\dfrac{4x^2+y^2+1}{4x^2-y^2}\right)\)

\(\Leftrightarrow P=\left(\dfrac{1}{2x-y}-\dfrac{3y}{4x^2-y^2}-\dfrac{2}{2x+y}\right):\left(\dfrac{4x^2+y^2+1}{4x^2-y^2}\right)\)

\(\Leftrightarrow P=\left(\dfrac{1}{2x-y}-\dfrac{3y}{\left(2x-y\right)\left(2x+y\right)}-\dfrac{2}{2x+y}\right):\left(\dfrac{4x^2+y^2+1}{4x^2-y^2}\right)\)

\(\Leftrightarrow P=\left(\dfrac{2x+y-3y-2\left(2x-y\right)}{\left(2x-y\right)\left(2x+y\right)}\right).\left(\dfrac{4x^2-y^2}{4x^2+y^2+1}\right)\) \(\Leftrightarrow P=\left(\dfrac{-2x}{\left(2x-y\right)\left(2x+y\right)}\right).\left(\dfrac{\left(2x-y\right)\left(2x+y\right)}{4x^2+y^2+1}\right)\) \(\Leftrightarrow P=\dfrac{-2x}{4x^2+y^2+1}\) b) đề thế này thì làm không đc câu b nha bn , bn xem lại đề thử có sai không

\(=\left(\dfrac{4x\left(x+1\right)+1}{4x^2}\right)\cdot\left(\dfrac{-2x+1}{2x+1}+\dfrac{1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{\left(2x-1\right)^2}{2x+1}\right)-\dfrac{1}{2x}\)

\(=\dfrac{\left(2x+1\right)^2}{4x^2}\cdot\left(\dfrac{-2x+1}{2x+1}+\dfrac{2x-1}{\left(2x+1\right)^2}\right)-\dfrac{1}{2x}\)

\(=\dfrac{\left(2x+1\right)^2}{4x^2}\cdot\dfrac{-\left(2x-1\right)\left(2x+1\right)+2x-1}{\left(2x+1\right)^2}-\dfrac{1}{2x}\)

\(=\dfrac{-\left(4x^2-1\right)+2x-1}{4x^2}-\dfrac{1}{2x}\)

\(=\dfrac{-4x^2+1+2x-1}{4x^2}-\dfrac{1}{2x}\)

\(=\dfrac{-4x^2+2x}{4x^2}-\dfrac{1}{2x}\)

\(=\dfrac{-4x^2+2x-2x}{4x^2}=-1\)

30 tháng 10 2022

\(A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\left(\dfrac{x\left(x^2-4x+4\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x\left(x^2-4x+4+4x\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x+1}{2x}\)

16 tháng 1 2018

( x22x / 2x2+8 2x2 / 84x+2x2x3 ).(11/x 2/x2 )

=[ x22x / 2(x2+4) 2x2 / 2(x2+4)x(x2+4) ]. x2x2 / x2

=[x22x / 2(x2+4) 2x2 / (2x)(x2+3)] . x2x2 / x2

=(x22x)(2x)4x2 / 2(2x)(x2+4) . x2+x2x2 / x2

= x(x2+4) / 2(2x)(x2+4). (x+1)(x2) / x2

=x+1 / 2x

\(A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x^3-2x^2-2x^2+4x+4x^2}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)

21 tháng 4 2017

1. \(\left|x+5\right|-\left|1-2x\right|=x\left(1\right)\)

Với phương trình kiểu này thì phải lập bảng để xét dấu của x+5 và 1-2x ta có nghiệm của hai nhị thức để chúng bằng 0 lần lượt là -5 và 0,5. Bảng xét dấu:

Bất phương trình bậc nhất một ẩn

Ứng với bảng ta có 3 khoảng giá trịn của x ứng với ba phương trình sau.

* Với \(x< -5\) (khoảng đầu)

\(\left(1\right)\Leftrightarrow-\left(x+5\right)-\left(1-2x\right)=x\\ \Leftrightarrow-x+2x-x=5+1\\ \Leftrightarrow0x=6\)

Phương trình vô nghiệm.

* Với \(-5\le x\le0,5\) (khoảng giữa)

\(\left(1\right)\Leftrightarrow\left(x+5\right)-\left(1-2x\right)=x\\ \Leftrightarrow x+2x-x=1-5\\ \Leftrightarrow x=-2\)

\(x=-2\) thỏa mãn điều kiện nên ta lấy.

* Với \(x>0,5\) (khoảng cuối)

\(\left(1\right)\Leftrightarrow\left(x+5\right)-\left(2x-1\right)=x\\ \Leftrightarrow x-2x-x=-5-1\\\Leftrightarrow x=3 \)

\(x=3\) thỏa nãm điều kiện nên ta lấy.

Kết luận tập nghiệm của phương trình (1) là: \(S=\left\{-2;3\right\}\)

21 tháng 4 2017

Chứng minh bất đẳng thức:

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\\ \Rightarrow2a^2+2b^2\ge a^2+2ab_{ }+b^2\\ \Leftrightarrow2a^2+2b^2-a^2-b^2-2ab\ge0\\ \Leftrightarrow a^2-2ab+b^2\ge0\\\Leftrightarrow\left(a-b\right)^2\ge0\left(1\right)\)

Vì BĐT (2) luôn đúng với mọi a,b do đó ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)