\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{6+\sqrt{6}}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

*****~~~~~~~~~~*****

 \(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{6+\sqrt{6}}{\sqrt{6}+1}\)

\(=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+\frac{\sqrt{6}\left(\sqrt{6}+1\right)}{\sqrt{6}+1}\)

\(=\sqrt{3}+\sqrt{6}\)

\(=\sqrt{3}\left(1+\sqrt{2}\right)\)

*****~~~~~~~~~~*****

\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}\)

\(=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

\(=\sqrt{3}+2+\sqrt{2}\)

(Chúc bạn học tốt nha!)

a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)

b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)

25 tháng 6 2016

B=\(\frac{6-6\sqrt{3}}{1-\sqrt{3}}+\frac{3\sqrt{3}+3}{\sqrt{3}+1}=\frac{6\left(1-\sqrt{3}\right)}{1-\sqrt{3}}+\frac{3\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=6+3=9\)

C=\(\frac{3+\sqrt{3}}{\sqrt{3}}+\frac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}=\frac{3\left(1+\sqrt{3}\right)}{\sqrt{3}}+\frac{\sqrt{3}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}=\sqrt{3}+1-\sqrt{3}=1\)

D=\(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)

E=\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}=\sqrt{3}+\frac{1}{2-\sqrt{3}}=\frac{2\sqrt{3}-1}{2-\sqrt{3}}\)

 

25 tháng 6 2016

kamsamittaeoeo

 

27 tháng 10 2020

B=\(\sqrt{9+2.3\sqrt{6}+6}+\sqrt{9+2.3.2\sqrt{6}+24}=\sqrt{\left(3+\sqrt{6}\right)^2}+\sqrt{\left(3+2\sqrt{6}\right)^2}\)=\(=3+\sqrt{6}+2+2\sqrt{6}=5+3\sqrt{6}\)

17 tháng 8 2016
  • \(\frac{2+\sqrt{2}}{1+\sqrt{2}}=\frac{\sqrt{2}\left(1+\sqrt{2}\right)}{1+\sqrt{2}}=\sqrt{2}\)
  • \(\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}=\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=-\sqrt{5}\)
  • \(\frac{2\sqrt{3}-\sqrt{6}}{1-\sqrt{3}}=\frac{-\sqrt{6}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=-\sqrt{6}\)
  • \(\frac{a-\sqrt{a}}{1-\sqrt{a}}=\frac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\)
  • \(\frac{p-2\sqrt{p}}{\sqrt{p}-2}=\frac{\sqrt{p}\left(\sqrt{p}-2\right)}{\sqrt{p}-2}=\sqrt{p}\)
13 tháng 7 2016

a) \(\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\(=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}-1}\)

b) \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\sqrt{\frac{x}{y}}\)

c) \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\sqrt{\frac{3}{7}}\)

d) \(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}=\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}\left(\sqrt{1}-\sqrt{2}\right)-\sqrt{3}\left(1-\sqrt{2}\right)}\)

\(=\frac{\left(2\sqrt{5}-\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right)\left(1-\sqrt{2}\right)}=\frac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)

e) \(\frac{-3\sqrt{3}+3}{2\sqrt{3}-2}=\frac{-3\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}-1\right)}=-\frac{3}{2}\)

15 tháng 7 2019

a ) \(A=\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)

\(=\frac{\left(\sqrt{5}-\sqrt{3}\right)-\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\)

\(=\frac{\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}}{5-3}\)

\(=\frac{-2\sqrt{3}}{2}\)

\(=-\sqrt{3}\)

15 tháng 7 2019

c ) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)

\(=\frac{1}{2+\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{2}{\sqrt{3}\left(\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{3}\left(\sqrt{3}+1\right)+\left(2+\sqrt{3}\right)\left(\sqrt{3}+1\right)-2\left(2+\sqrt{3}\right)}{\sqrt{3}\left(\sqrt{3}+1\right)\left(2+\sqrt{3}\right)}\)

\(=\frac{2\sqrt{3}+4}{\sqrt{3}\left(\sqrt{3}+1\right)\left(2+\sqrt{3}\right)}\)

\(=\frac{2\left(\sqrt{3}+2\right)}{\sqrt{3}\left(\sqrt{3}+1\right)\left(2+\sqrt{3}\right)}\)

\(=\frac{2.\sqrt{3}\left(\sqrt{3}-1\right)}{3\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\sqrt{3}\left(\sqrt{3}-1\right)}{3.\left(3-1\right)}\)

\(=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{3}\)

\(=\frac{3-\sqrt{3}}{3}\)

\(=1-\frac{\sqrt{3}}{3}\)