\(\frac{2x^2-20x+50}{3x+3}\)\(. \frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\) 

 \(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)

\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\) 

 \(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)

\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\) 

\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)

\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)

17 tháng 8 2020

a) \(4x^2\left(5x^3-2x+3\right)\)

\(=20x^5-8x^3+12x^2\)

b) \(3y^2\left(4y^3+\frac{2}{3}y^2-\frac{1}{3}\right)\)

\(=12y^5+2y^4-y^2\)

c) \(\left(5x^2-4x\right)\left(x-2\right)\)

\(=5x^3-14x^2+8x\)

d) \(\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+22x-55-6x^2-23x-21\)

\(=-x-76\)

17 tháng 8 2020

1, \(4x^2\left(5x^3-2x+3\right)=20x^5-8x^3+12x^2\)

2, \(3y^2\left(4y^3+\frac{2}{3}y^2-\frac{1}{3}\right)=12y^5+2y^4-y^2\)

3, \(\left(5x^2-4x\right)\left(x-2\right)=5x^3-10x^2-4x^2+8x=5x^3-14x^2+8x\)

4, \(\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)=6x^2+33x-10x-55-\left(6x^2+14x+9x+21\right)\)

\(=6x^2+23x-55-6x^2-23x-21=-76\)

18 tháng 12 2017

bạn ơi tới chừ bạn đã có lời giải chưa

17 tháng 8 2020

a) \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x=-x\left(x+3\right)=-3\left(3+3\right)=-18\)

b) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2=3\left(x^2-\frac{4}{5}y^2\right)\)

\(=3\left(4^2-\frac{4}{5}.5^2\right)=3.\left(-4\right)=-12\)

c) \(\left(x-2\right)^2-\left(x+7\right)\left(x-7\right)=x^2-4x+4-x^2+49=-4x+53=-4.3+53=41\)

d) \(x^2+12x+36=\left(x+6\right)^2=\left(64+6\right)^2=70^2=4900\)

e) \(\left(x-3\right)^2-\left(x-4\right)\left(x+4\right)=x^2-6x+9-x^2+16=-6x+25=-6\left(-1\right)+25\)

= 31

f) \(\left(3x+2y\right)^2-4y\left(3x+y\right)=9x^2+12xy+4y^2-12xy-4y^2=9x^2=9\left(-\frac{1}{3}\right)^2=1\)

17 tháng 8 2020

a, \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x\)

Thay x = 3 vào biểu thức trên ta cs : \(-3^2-3.3=-9-9=-18\)

b, \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2\)

Thay x = 4 ; y = 5 vào biểu thức trên ta có : \(3.4^2-\frac{12}{5}.5^2=-12\)

17 tháng 7 2019

A = 5(x + 3)(x - 3) + (2x + 3)3 + (x - 6)2

A = 5(x + 3)(x - 3) + 4x2 + 12x + 9 + x2 - 12x + 36

A = 5x2 - 45x + 4x2 + 12x + 9 + x- 12x + 36

A = 10x2 (1)

Thay x = -1/5 vào (1), ta có:

A = 10x2 = 10.(-1/5)2 = 2/5

A = 2/5

Vậy:...

19 tháng 11 2016

\(\frac{x^4-y^4}{y^3-x^3}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(y-x\right)\left(x^2+xy+y^2\right)}=-\frac{\left(x^2+y^2\right)\left(x+y\right)}{\left(x^2+xy+y^2\right)}\)

\(\frac{\left(2x-4\right)\left(x-3\right)}{\left(x-2\right)\left(3x^2-27\right)}=\frac{2\left(x-2\right)\left(x-3\right)}{\left(x-2\right)3\left(x-3\right)\left(x+3\right)}=\frac{2}{3\left(x+3\right)}\)

\(\frac{2x^3+x^2-2x-1}{x^3+2x^2-x-2}=\frac{\left(x-1\right)\left(x+1\right)\left(2x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}=\frac{2x+1}{x+2}\)

19 tháng 11 2016

\(\frac{x^4-y^4}{y^3-x^3}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(y-x\right)\left(x^2+xy+y^2\right)}=-\frac{\left(x^2+y^2\right)\left(x+y\right)}{\left(x^2+xy+y^2\right)}\)