Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có phải/....
1) \(A=\dfrac{x+3}{\sqrt{x}-2}\)
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\sqrt{x}-2}{x-4}\) hay \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}+\dfrac{5\left(\sqrt{x}-2\right)}{x-4}\)
2) \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(\Rightarrow\sqrt{x}+3\)
\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)
\(\Rightarrow\sqrt{y}-1\)
\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)
\(\Rightarrow\sqrt{xy}\)
\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)
\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)
\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)
\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)
Bài 6:
a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)
=>x^2+4=12
=>x^2=8
=>\(x=\pm2\sqrt{2}\)
b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>x+1=1
=>x=0
c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)
=>\(\sqrt{2x}=2\)
=>2x=4
=>x=2
d: \(\Leftrightarrow2\left|x+2\right|=8\)
=>x+2=4 hoặcx+2=-4
=>x=-6 hoặc x=2
ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne4\end{matrix}\right.\)
Câu a :
\(P=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\left(\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\dfrac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\dfrac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\sqrt{x}}{2-\sqrt{x}}\times\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)
\(=\dfrac{-4x}{3-\sqrt{x}}=\dfrac{4x}{\sqrt{x}-3}\)
Câu b :
\(P=-1\)
\(\Leftrightarrow\) \(\dfrac{4x}{\sqrt{x}-3}=-1\)
\(\Leftrightarrow4x=-\sqrt{x}+3\)
\(\Leftrightarrow4x+\sqrt{x}-3=0\)
\(\Leftrightarrow4x+4\sqrt{x}-3\sqrt{x}-3=0\)
\(\Leftrightarrow4\sqrt{x}\left(\sqrt{x}+1\right)-3\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(4\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=0\\4\sqrt{x}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x=\dfrac{9}{16}\end{matrix}\right.\)
Vậy \(x=\dfrac{9}{16}\)
Chúc bạn học tốt !!
Lời giải:
a)
Ta có: \(\frac{1}{\sqrt{3}+2}+\frac{1}{\sqrt{3}-2}=\frac{\sqrt{3}-2+\sqrt{3}+2}{(\sqrt{3}+2)(\sqrt{3}-2)}=\frac{2\sqrt{3}}{3-4}=-2\sqrt{3}\)
Để \(B=\frac{1}{\sqrt{3}+2}+\frac{1}{\sqrt{3}-2}\Leftrightarrow \frac{2}{\sqrt{x}-2}=-2\sqrt{3}\)
\(\Leftrightarrow \frac{1}{\sqrt{x}-2}=-\sqrt{3}\)
\(\Leftrightarrow\sqrt{x}-2=\frac{-1}{\sqrt{3}}\)
\(\Leftrightarrow \sqrt{x}=2-\frac{1}{\sqrt{3}}\Rightarrow x=(2-\frac{1}{\sqrt{3}})^2=\frac{13-4\sqrt{3}}{3}\)
b)
ĐK: \(x\geq 0; x\neq 4\)
\(A=\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}=\frac{2\sqrt{x}+2}{x-4}\)
\(P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\frac{2(\sqrt{x}+1)}{x-4}=\frac{2(x-4)}{2(\sqrt{x}-2)(\sqrt{x}+1)}\)
\(=\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+1)}=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
c) Thêm ĐK: \(x\geq 1\)
Từ biểu thức P vừa tìm được:
\(P(\sqrt{x}+1)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)
\(\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}+1}.(\sqrt{x}+1)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)
\(\Leftrightarrow \sqrt{x}+2-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)
\(\Leftrightarrow 2\sqrt{x-1}=2x-2\sqrt{2x}+2\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{x}-\sqrt{2})^2=0\)
Vì \((\sqrt{x-1}-1)^2, (\sqrt{x}-\sqrt{2})^2\geq 0, \forall x\in \text{ĐKXĐ}\)
\(\Rightarrow (\sqrt{x-1}-1)^2+(\sqrt{x}-\sqrt{2})^2\geq 0\). Dấu bằng xảy ra khi :
\(\left\{\begin{matrix} \sqrt{x-1}-1=0\\ \sqrt{x}-\sqrt{2}=0\end{matrix}\right.\Leftrightarrow x=2\) (thỏa mãn)
Vậy..........
a: \(E=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1+4\sqrt{x}\left(x-1\right)}{x-1}:\dfrac{x-1}{\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+4x\sqrt{x}-4\sqrt{x}}{x-1}\cdot\dfrac{\sqrt{x}}{x-1}\)
\(=\dfrac{4x^2}{\left(x-1\right)^2}\)
b: \(x=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
Thay x=2 vào E, ta được:
\(E=\dfrac{4\cdot2^2}{\left(2-1\right)^2}=16\)
E = \(\dfrac{x+2\sqrt{x}+1}{\sqrt{x}+1}+\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\) = \(\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
E = \(\sqrt{x}+1+\sqrt{x}\) = \(2\sqrt{x}+1\)
F = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}+1}{3-\sqrt{x}}-\dfrac{3-11\sqrt{x}}{x-9}\)
F = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
F = \(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-\left(3-11\sqrt{x}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
F = \(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}+\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
F = \(\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\) = \(\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\) = \(\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
G = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{4\sqrt{x}-4}{4-x}\)
G = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{4\sqrt{x}-4}{x-4}\)
G = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
G = \(\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(4\sqrt{x}-4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
G = \(\dfrac{x+2\sqrt{x}+3\sqrt{x}+6-\left(x-2\sqrt{x}-\sqrt{x}+2\right)-\left(4\sqrt{x}-4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
G = \(\dfrac{x+5\sqrt{x}+6-x+2\sqrt{x}+\sqrt{x}-2-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
G = \(\dfrac{4\sqrt{x}+8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\) = \(\dfrac{4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\) = \(\dfrac{4}{\sqrt{x}-2}\)
a) \(\sqrt{4x+8}-\sqrt{9x+18}+\sqrt{x+2}=\sqrt{x+5}\)
\(\Leftrightarrow\sqrt{4\left(x+2\right)}-\sqrt{9\left(x+2\right)}+\sqrt{x+2}=\sqrt{x+5}\)
\(\Leftrightarrow2\sqrt{x+2}-3\sqrt{x+2}+\sqrt{x+2}=\sqrt{x+5}\)
\(\Leftrightarrow0\sqrt{x+2}=\sqrt{x+5}\Leftrightarrow0=\sqrt{x+5}\)
\(\Leftrightarrow0=x+5\Leftrightarrow-5=x\)
Vậy phương trình đã cho có nghiệm duy nhất là x = -5
b) ĐKXĐ: \(x\ge0;x\ne1\)
\(T=\left(\dfrac{1}{1+2\sqrt{x}}-\dfrac{1}{\sqrt{3}+2}\right):\dfrac{1-\sqrt{x}}{x+4\sqrt{x}+4}\)
\(=\left(\dfrac{\sqrt{3}+2-1-2\sqrt{x}}{\left(1+2\sqrt{x}\right)\left(\sqrt{3}+2\right)}\right):\left(\dfrac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\right)\)
\(=\dfrac{1-2\sqrt{x}+\sqrt{3}}{\left(1+2\sqrt{x}\right)\left(\sqrt{3}+2\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}\)
a) Bổ sung: ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x+2}XĐ\Leftrightarrow x+2\ge0\\\sqrt{x+5}XĐ\Leftrightarrow x+5\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ge-5\end{matrix}\right.\Rightarrow}x\ge-2}\) Sau khi tìm được x = -5 ta thấy k thỏa mãn Đk: \(x\ge-2\)
Vậy pt đã cho là vô nghiệm
ĐKXĐ:\(x>0;x\ne4\)
B=\(\left(\dfrac{1}{x-4}-\dfrac{1}{x-4\sqrt{x}+4}\right)\cdot\dfrac{x+2\sqrt{x}}{\sqrt{x}}=\dfrac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}}=\dfrac{-4}{\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+2\right)}\cdot\left(\sqrt{x}+2\right)=-\dfrac{4}{\left(\sqrt{x}-2\right)^2}\)
Vậy...