Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
( a + b )3 + ( a - b )3 - 6ab2 < đã sửa >
= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3 - 6ab2
= 2a3
2/
A = x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y
Dấu "=" xảy ra khi x = 1 ; y = 2
=> MinA = 1 <=> x = 1 ; y = 2
B = 2x2 + 8x + 10 = 2( x2 + 4x + 4 ) + 2 = 2( x + 2 )2 + 2 ≥ 2 ∀ x
Dấu "=" xảy ra khi x = -2
=> MinB = 2 <=> x = -2
C = 25x2 + 3y2 - 10x + 11 = ( 25x2 - 10x + 1 ) + 3y2 + 10 = ( 5x - 1 )2 + 3y2 + 10 ≥ 10 ∀ x, y
Dấu "=" xảy ra khi x = 1/5 ; y = 0
=> MinC = 10 <=> x = 1/5 ; y = 0
D = ( x - 3 )2 + ( x - 11 )2
Đặt t = x - 7
D = ( t + 4 )2 + ( t - 4 )2
= t2 + 8t + 16 + t2 - 8t + 16
= t2 + 32 ≥ 32 ∀ t
Dấu "=" xảy ra khi t = 0
=> x - 7 = 0 => x = 7
=> MinD = 32 <=> x = 7
\(A=\left[\left(a+b\right)+\left(c+d\right)\right]^2+\left[\left(a+b\right)-\left(c+d\right)\right]^2+\left[\left(a-b\right)+\left(c-d\right)\right]^2+\left[\left(a-b\right)-\left(c-d\right)\right]^2\)
Ta có
\(\left[\left(a+b\right)+\left(c+d\right)\right]^2=\left(a+b\right)^2+2\left(a+b\right)\left(c+d\right)+\left(c+d\right)^2\)
\(\left[\left(a+b\right)-\left(c+d\right)\right]^2=\left(a+b\right)^2-2\left(a+b\right)\left(c+d\right)+\left(c+d\right)^2\)
\(\left[\left(a-b\right)+\left(c-d\right)\right]^2=\left(a-b\right)^2+2\left(a-b\right)\left(c-d\right)+\left(c-d\right)^2\)
\(\left[\left(a-b\right)-\left(c-d\right)\right]^2=\left(a-b\right)^2-2\left(a-b\right)\left(c-d\right)+\left(c-d\right)^2\)
\(A=2\left(a+b\right)^2+2\left(a-b\right)^2+2\left(c+d\right)^2+2\left(c-d\right)^2\)
\(A=2\left(a^2+2ab+b^2+a^2-2ab+b^2+c^2+2cd+d^2+c^2-2cd+d^2\right)\)
\(A=4\left(a^2+b^2+c^2+d^2\right)\)
2(a+b)2+2(c+d)2+2(a−b)2+2(d−c)2=2(2a2+2b2+2d2+2c2=4(∑a2)⇔2(a+b)2+2(c+d)2+2(a−b)2+2(d−c)2=2(2a2+2b2+2d2+2c2=4(∑a2)
a) A = (2x + 6)(4x2 − 12x + 36) − 8x3 + 10.
=8x3+216-8x3+10
=226
b) B = (2x − 1)(4x2 + 2x + 1) − 8(x3 + 1).
=8x3-1-8x3-8
=-9
c) C = (2 + a)(2 − a)(4 + 2a + a2 )(a2 − 2a + 4).
=[(2+a)(a2 − 2a + 4)] [((2 − a)(4 + 2a + a2 )]
=[(a+2)(a2 − 2a + 4)] [((2 − a)(4 + 2a + a2 )]
=(a3+8)(8-a3)
=8a3-a6+64-8a3
=-a6+64
=64-a6
=(8-a3)(8+a3)
d) D = (a3 b3 − 1)(a3 b3 + 1) − a3 b3 .
=a6b6-1-a3b3
a) \(A=\left(x-y\right)^2+\left(x+y\right)^2\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)
\(=x^2-2xy+y^2+x^2+2xy+y^2\)
\(=\left(x^2+x^2\right)-\left(2xy-2xy\right)+\left(y^2+y^2\right)\)
\(=2x^2+2y^2\)
\(=2.\left(x^2+y^2\right)\)
b) \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)
\(=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)
\(=4a^2+4ab+b^2-4a^2+4ab-b^2\)
\(=\left(4a^2-4a^2\right)+\left(4ab+4ab\right)+\left(b^2-b^2\right)\)
\(=8ab\)\
c) \(C=\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)
\(=x^2+2xy+y^2-x^2+2xy-y^2\)
\(=\left(x^2-x^2\right)+\left(2xy+2xy\right)+\left(y^2-y^2\right)\)
\(=4xy\)
d) \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)
\(=4x^2-4x+1-8x^2+24x-18+4\)
\(=\left(4x^2-8x^2\right)-\left(4x-24x\right)+\left(1-18+4\right)\)
\(=-4x^2+20x-13\)
\(=-4x^2+20x-25+12\)
\(=-\left(4x^2-20x+25\right)-8\)
\(=-\left[\left(2x\right)^2-2.4x.5+5^2\right]-8\)
\(=-\left(2x-5\right)^2-8\)
Đặt \(a+b-c=x;b+c-a=y;a+c-b=z\)
Lúc đó \(x+y+z=b+c-a+a+b-c+a+c-b=a+b+c\)
\(\Rightarrow bt=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3\left(x+y\right)^2z+3z^2\left(x+y\right)+z^3-x^3-y^3-z^3\)
\(=\left(x+y\right)^3+3z\left(x+y\right)\left(x+y+z\right)+z^3-x^3-y^3-z^3\)
\(=x^3+3x^2y+3xy^2+y^2+3z\left(x+y\right)\left(x+y+z\right)\)
\(+z^3-x^3-y^3-z^3\)
\(=x^3+3xy\left(x+y\right)+y^2+3z\left(x+y\right)\left(x+y+z\right)\)
\(+z^3-x^3-y^3-z^3\)
\(=3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)\)
\(=3\left(x+y\right)\left(xy+xz+zy+z^2\right)\)
\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=3\left(x+y\right)\left(x+z\right)\left(y+z\right)\)
bài 1.
a.\(A=x^2-2xy+y^2+x^2+2xy+y^2=2\left(x^2+y^2\right)\)
b.\(B=x^2+2xy+y^2-\left(x^2-2xy+y^2\right)=4xy\)
c.\(C=4a^2+4ab+b^2-\left(4a^2-4ab+b^2\right)=8ab\)
d.\(D=4x^2-4x+1-2\left(4x^2-12x+9\right)+4=-4x^2+20x-13\)
.bài 2
a.\(A=x^2+6x+9+x^2-9-2\left(x^2-2x-8\right)=10x+16;x=-\frac{1}{2}\Rightarrow A=9\)
b.\(B=9x^2+24x+16-x^2+16-10x=8x^2+14x+32\Rightarrow x=-\frac{1}{10}\Rightarrow B=\frac{767}{25}\)
c.\(C=x^2+2x+1-\left(4x^2-4x+1\right)+3\left(x^2-4\right)=6x-12\Rightarrow x=1\Rightarrow C=-6\)
d.\(D=x^2-9+x^2-4x+4-2x^2+8x=4x-5\Rightarrow x=-1\Rightarrow A=-9\)
Trả lời:
Bài 1: Rút gọn biểu thức:
a) A = ( x - y )2 + ( x + y )2
= x2 - 2xy + y2 + x2 + 2xy + y2
= 2x2 + 2y2
b) B = ( x + y )2 - ( x - y )2
= x2 + 2xy + y2 - ( x2 - 2xy + y2 )
= x2 + 2xy + y2 - x2 + 2xy - y2
= 4xy
c) C = ( 2a + b )2 - ( 2a - b )2
= 4a2 + 4ab + b2 - ( 4a2 - 4ab + b2 )
= 4a2 + 4ab + b2 - 4a2 + 4ab - b2
= 8ab
d) D = ( 2x - 1 )2 - 2 ( 2x - 3 )2 + 4
= 4x2 - 4x + 1 - 2 ( 4x2 - 12x + 9 ) + 4
= 4x2 - 4x + 1 - 8x2 + 24x - 18 + 4
= - 4x2 + 20x - 13
Bài 2: Rút gọn rồi tính giá trị biểu thức:
a) A = ( x + 3 )2 + ( x - 3 )( x + 3 ) - 2 ( x + 2 )( x - 4 )
= x2 + 6x + 9 + x2 - 9 - 2 ( x2 - 2x - 8 )
= 2x2 + 6x - 2x2 + 4x + 16
= 10x + 16
Thay x = 1/2 vào A, ta có:
\(A=10.\left(-\frac{1}{2}\right)+16=-5+16=11\)
b) B = ( 3x + 4 )2 - ( x - 4 )( x + 4 ) - 10x
= 9x2 + 24x + 16 - x2 + 16 - 10x
= 8x2 + 14x + 32
Thay x = - 1/10 vào B, ta có:
\(B=8.\left(-\frac{1}{10}\right)^2+14.\left(-\frac{1}{10}\right)+32=\frac{767}{25}\)
c) C = ( x + 1 )2 - ( 2x - 1 )2 + 3 ( x - 2 )( x + 2 )
= x2 + 2x + 1 - 4x2 + 4x - 1 + 3 ( x2 - 4 )
= - 3x2 + 6x + 3x2 - 12
= 6x - 12
Thay x = 1 vào C, ta có:
\(C=6.1-12=-6\)
d) D = ( x - 3 )( x + 3 ) + ( x - 2 )2 - 2x ( x - 4 )
= x2 - 9 + x2 - 4x + 4 - 2x2 + 8x
= 4x - 5
Thay x = - 1 vào D, ta có:
\(D=4.\left(-1\right)-5=-9\)