Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{0,49\cdot a^2}=\sqrt{0,7^2\cdot a^2}=\sqrt{\left(0,7\cdot\left|a\right|\right)^2}=0,7\left|a\right|\) (với a < 0)
b) \(\sqrt{25\left(7-a\right)^2}=\sqrt{\left[5\left(7-a\right)\right]^2}=5\left|7-a\right|\) (với a >/ 7)
c) \(\sqrt{a^4\left(a-2\right)^2}=a^2\left(a-2\right)=a^3-2a\) (với a >0 )
Tớ mới học nên cx ko chắc chắn lắm nhé.
sử dụng dấu căn trong thanh công cụ này để soạn thảo câu hỏi rõ ràng nha
2) a) \(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
b) \(x^2-6=\left(x-\sqrt{6}\right).\left(x+\sqrt{6}\right)\)
c) = \(x^2+2x.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)
d) = \(x^2-2x\sqrt{5}+\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)^2\)
\(\sqrt{1}+\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}\) với a > 0
\(=1+\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}=\left(1+\dfrac{1}{a^2}+\dfrac{2}{a}\right)-\dfrac{2}{a}+\dfrac{1}{\left(a+1\right)^2}\)
\(=\left(1+\dfrac{1}{a}\right)^2-2\left[\dfrac{\left(a+1\right)}{a}\right].\left[\dfrac{1}{\left(a+1\right)}\right]+\dfrac{1}{\left(a+1\right)^2}\)
\(=\left(1+\dfrac{1}{a}\right)^2-2\left(1+\dfrac{1}{a}\right).\dfrac{1}{\left(a+1\right)}+\dfrac{1}{\left(a+1\right)^2}\)
\(=\left[1+\dfrac{1}{a}-\dfrac{1}{\left(a+1\right)}\right]^2\)
\(a)\sqrt{9\times^2}-2\times\)
\(=\sqrt{3^2\times^2}-2\times\)
\(=\sqrt{(3\times)^2}-2\times\)
\(=3\times-2\times\)
\(=\times\)
\(a\text{)}\:36x^2-5=\left(6x\right)^2-\left(\sqrt{5}\right)^2\\ =\left(6x-\sqrt{5}\right)\left(6x+\sqrt{5}\right)\)
\(b\text{)}\:25-3x^2=5^2-\left(\sqrt{3}x\right)^2\\ =\left(5-\sqrt{3}x\right)\left(5+\sqrt{3}\right)\)
\(c\text{)}\:x-4=\left(\sqrt{x}\right)^2-2^2\\ =\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
\(d\text{)}\:11+9x=9.\dfrac{11}{9}+9x\\ =9\left(\dfrac{11}{9}+x\right)\)
\(e\text{)}\:31+7x=7.\dfrac{31}{7}+7x\\ =7\left(\dfrac{31}{7}+x\right)\)
\(2\sqrt{a^2}=2\left|a\right|=2a\) (với \(a\ge0\) )
\(3\sqrt{\left(a-2\right)^2}=3\left|a-2\right|=3\left(2-a\right)=6-3a\) (\(a< 2\))
a: \(2\sqrt{a^2}=-2a\)
b: \(3\sqrt{\left(a-2\right)^2}=3\left|a-2\right|=3\left(2-a\right)\)