Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài ko chính xác, biểu thức này không rút gọn được (có thể coi việc biến đổi khả dĩ duy nhất \(1+2sina.cosa=\left(sina+cosa\right)^2\) không phải là hành động rút gọn)
chỉnh lại đề 1 chút: \(A=\dfrac{1+2sin\alpha.cos\alpha}{cos^2\alpha-sin^2\alpha}=\dfrac{cos^2\alpha+sin^2\alpha+2sin\alpha.cos\alpha}{\left(cos\alpha-sin\alpha\right)\left(cos\alpha+sin\alpha\right)}\)
\(=\dfrac{\left(cos\alpha+sin\alpha\right)^2}{\left(cos\alpha-sin\alpha\right)\left(cos\alpha+sin\alpha\right)}=\dfrac{cos\alpha+sin\alpha}{cos\alpha-sin\alpha}\)
\(B=\dfrac{1-4\sin^2x\cdot\cos^2x}{\sin^2x+2\sin x\cdot\cos x+\cos^2}+2\sin x\cdot\cos x\\ B=\dfrac{1-4\sin^2x\cdot\cos^2x}{2\sin x\cdot\cos x}+2\sin x\cdot\cos x\\ B=\dfrac{1-4\sin^2x\cdot\cos^2x+4\sin^2x\cdot\cos^2x}{2\sin x\cdot\cos x}=\dfrac{1}{2\sin x\cdot\cos x}\)
\(B=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha\right)^3+\left(\cos^2\alpha\right)^3+3\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha+\cos^2\alpha\right)\left(\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha\right)+3\sin^2\alpha.\cos^2\alpha\)
\(B=\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha+3\sin^2\alpha.\cos^2\alpha\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))
\(B=\left(\sin^2\alpha\right)^2+\left(\cos^2\alpha\right)^2+2.\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))
Vậy B = 1
mình ko bt cách viết phân số nên đường gạch ngang mờ mờ mà các bạn nhìn là phân số nhé
ta có :
\(\left(1-cosa\right)\left(1+cosa\right)=1-cos^2a=sin^2a\)