Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác DIHK có
góc DIH=góc DKH=góc KDI=90 độ
nên DIHK là hình chữ nhật
b: Xét tứ giác IHAK có
IH//AK
IH=AK
Do đó: IHAK là hình bình hành
=>B là trung điểm chung của IA và HK
Xét ΔIKA có IC/IK=IB/IA
nên BC//KA
Xét ΔIDA có IB/IA=IM/ID
nên BM//DA
=>B,C,M thẳng hàng
Xét tứ giác ABCD có:
\(\begin{array}{l} \widehat A + \widehat B + \widehat C + \widehat D = {360^0}\\{85^0} + x + {65^0} + {75^0} = {360^0}\\x = {360^0} - {85^0} - {65^0} - {75^0} = {135^0}\end{array}\)
Những hình khối có dạng ở hình 11 được gọi là hình chóp tứ giác đều.
Đồ thị hàm số là tập hợp các điểm có tọa độ \(\left( { - 2;2} \right);\left( { - 1;1} \right);\left( {0;0} \right);\left( {1; - 1} \right);\left( {2; - 2} \right)\) được vẽ trên mặt phẳng tọa độ như hình dưới đây:
Trong Hình 4.30 có \(\widehat {DEM} = \widehat {EMN}\) mà hai góc này ở vị trí so le trong nên MN // DE.
Áp dụng định lí Thalès vào tam giác DEF có MN // DE, ta có:
\(\dfrac{{MF}}{{M{\rm{D}}}} = \dfrac{{NF}}{{NE}}\) hay \(\dfrac{2}{3} = \dfrac{x}{6}\)
Suy ra \(x = \dfrac{{2.6}}{3} = 4\) (đvđd).
Vậy x = 4 (đvđd).
Trong Hình 4.23 có \(\widehat {DME} = \widehat {MEF}\) nên EM là tia phân giác của \(\widehat {{\rm{DEF}}}\).
Áp dụng tính chất đường phân giác của tam giác, ta có:
\(\dfrac{{E{\rm{D}}}}{{EF}} = \dfrac{{M{\rm{D}}}}{{MF}}\) hay \(\dfrac{{4,5}}{x} = \dfrac{{3,5}}{{5,6}}\)
Suy ra: \(x = \dfrac{{5,6.4,5}}{{3,5}} = 7,2\)(đvđd)
Vậy x = 7,2 (đvđd).
Xét tam giác vuông \(PQR\) có:
\(\widehat P + \widehat Q + \widehat R = 180^\circ \Leftrightarrow \widehat P + 90^\circ + 42^\circ = 180^\circ \Rightarrow \widehat P = 180^\circ - 90^\circ - 42^\circ = 48^\circ \)
Xét tam giác vuông \(UVT\) có:
\(U{V^2} = U{T^2} + V{T^2} \Leftrightarrow {6^2} = U{T^2} + {4^2} \Rightarrow U{T^2} = {6^2} - {4^2} = 20 \Rightarrow UT = 2\sqrt 5 \)
Xét tam giác vuông \(DEF\) có:
\(E{F^2} = D{E^2} + D{F^2} \Leftrightarrow E{F^2} = {9^2} + {12^2} \Rightarrow E{F^2} = 225 \Rightarrow EF = 15\)
Xét tam giác vuông \(MNK\) có:
\(K{N^2} = K{M^2} + M{N^2} \Leftrightarrow {9^2} = K{M^2} + {6^2} \Rightarrow K{M^2} = {9^2} - {6^2} = 45 \Rightarrow KM = 3\sqrt 5 \)
Xét tam giác vuông \(IGH\) có:
\(I{H^2} = H{G^2} + I{G^2} \Leftrightarrow I{H^2} = 7,{5^2} + {10^2} \Rightarrow I{H^2} = 156,25 \Rightarrow IH = 12,5\)
- Xét \(\Delta ABC\) và \(\Delta QPR\) có:
\(\widehat B = \widehat P = 48^\circ \) (chứng minh trên)
\(\widehat A = \widehat Q = 90^\circ \)
Do đó, \(\Delta ABC\backsim\Delta QPR\) (g.g)
- Xét \(\Delta UTV\) và \(\Delta KMN\) có:
\(\widehat T = \widehat M = 90^\circ \)
\(\frac{{UT}}{{KM}} = \frac{{2\sqrt 5 }}{{3\sqrt 5 }} = \frac{2}{3};\frac{{VT}}{{MN}} = \frac{4}{6} = \frac{2}{3}\)
Do đó, \(\Delta UTV\backsim\Delta KMN\) (c.g.c)
- Xét \(\Delta DEF\) và \(\Delta GHI\) có:
\(\widehat D = \widehat G = 90^\circ \)
\(\frac{{HG}}{{DE}} = \frac{{7,5}}{9} = \frac{5}{6};\frac{{IG}}{{DF}} = \frac{{10}}{{12}} = \frac{5}{6}\)
Do đó, \(\Delta DEF\backsim\Delta GHI\) (c.g.c).
ĐKXĐ: \(x\notin\left\{0;-2;1;-1\right\}\)
\(M=\dfrac{1}{x^2+2x}-\dfrac{1}{x^2-1}\)
\(=\dfrac{x^2-1-x^2-2x}{\left(x^2-1\right)\left(x^2+2x\right)}\)
\(=\dfrac{-2x-1}{\left(x-1\right)\left(x+1\right)\cdot x\left(x+2\right)}\)