\(\left(\frac{\sqrt{x}+1}{x+4\sqrt{x}+4}-\frac{\sqrt{x}-1}{x-4}\right).\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2016

1/ Ta có 

\(N+\sqrt{x}-1=\frac{3}{\sqrt{x}-2}+\sqrt{x}-1\)

\(=\frac{3}{\sqrt{x}-2}+\sqrt{x}-2+1\)

\(\ge2\sqrt{3}+1\)

Dấu = xảy ra khi \(\frac{3}{\sqrt{x}-2}=\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2=\sqrt{3}\)

\(\Leftrightarrow\)x = (\(\sqrt{3}+2\))2

19 tháng 11 2016

Đáp số câu 2

\(\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)

30 tháng 10 2020

1. \(VT=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=2+\sqrt{3}-2+\sqrt{3}=VP\)

30 tháng 10 2020

Bài 1.

Ta có : \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{3+4\sqrt{3}+4}-\sqrt{3-4\sqrt{3}+4}\)

\(=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\left|\sqrt{3}+2\right|-\left|\sqrt{3}-2\right|\)

\(=\sqrt{3}+2-\left(2-\sqrt{3}\right)\)

\(=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\left(đpcm\right)\)