Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A = \left( {\dfrac{3}{{2x + 4}} + \dfrac{x}{{2 - x}} - \dfrac{{2{x^2} + 3}}{{{x^2} - 4}}} \right):\dfrac{{2x - 1}}{{4x - 8}}\\ A = \left[ {\dfrac{3}{{2\left( {x + 2} \right)}} - \dfrac{x}{{x - 2}} - \dfrac{{2{x^2} + 3}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}} \right].\dfrac{{4x - 8}}{{2x - 1}}\\ A = \dfrac{{3\left( {x - 2} \right) - 2x\left( {x + 2} \right) - 2\left( {2{x^2} + 3} \right)}}{{2\left( {x - 2} \right)\left( {x + 2} \right)}}.\dfrac{{4\left( {x - 2} \right)}}{{2x - 1}}\\ A = \dfrac{{3x - 6 - 2{x^2} - 4x - 4{x^2} - 6}}{{x + 2}}.\dfrac{2}{{2x - 1}}\\ A = \dfrac{{ - x - 12 - 6{x^2}}}{{x + 2}}.\dfrac{2}{{2x - 1}}\\ A = \dfrac{{ - 2x - 24 - 12{x^2}}}{{2{x^2} - x + 4x - 2}}\\ A = \dfrac{{ - 12{x^2} - 2x - 24}}{{2{x^2} + 3x - 2}}\\ \)
a) \(\frac{36\left(x-2\right)}{32-16x}=\frac{36\left(x-2\right)}{16\left(2-x\right)}=-\frac{36\left(2-x\right)}{16\left(2-x\right)}=-\frac{36}{16}=-\frac{9}{4}\)
b) \(\frac{3x^2-12x+12}{x^4-8x}=\frac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}=\frac{3x-6}{x^3+2x^2+4x}\)
c) \(\frac{7x^2+14x+7}{3x^2+3x}=\frac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}=\frac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\frac{7\left(x+1\right)}{3x}=\frac{7x+7}{3x}\)
d) \(\frac{x^4-5x^2+4}{x^4-10x^2+9}=\frac{x^4-x^2-4x^2+4}{x^4-x^2-9x^2+9}=\frac{x^2\left(x^2-1\right)-4\left(x^2-1\right)}{x^2\left(x^2-1\right)-9\left(x^2-1\right)}=\frac{\left(x^2-4\right)\left(x^2-1\right)}{\left(x^2-9\right)\left(x^2-1\right)}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\)
e) \(\cdot\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}=\frac{\left(x^3+1\right)\left(x+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}=\frac{x^2+2x+1}{x^2+1}\)
\(\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{x^2-1}-\frac{x+3}{2\left(x+1\right)}\right)\frac{4x^2-4}{5}\)
\(=\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right)\frac{4x^2-4}{5}\)
\(=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4x^2-4}{5}\)
\(=\left(\frac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x-1\right)\left(x+1\right)}\right)\frac{4\left(x^2-1\right)}{5}\)
\(=\frac{10}{2\left(x-1\right)
\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=4\)
Vậy giá trị của biểu thức là 4
3/x+3 + 1/x-3 - 18/9-x2 = 3(x-3)/(x+3)(x-3) + (x+3)/(x-3)(x+3) + 18/(x+3)(x-3) = 9-3x-3-x-18/(x+3)(x-3) = -4x-12/(x+3)(x-3) = -4(x+3)/(x+3)(x-3) = -4/(x+3)