Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)
\(=\frac{-5}{9}.\left(\frac{3}{10}-\frac{4}{10}\right)\)
\(=\frac{-5}{9}.\frac{-1}{10}\)
\(=\frac{5}{90}\)
\(=\frac{1}{18}\)
b,\(\frac{2}{3}+\frac{-1}{3}+\frac{7}{15}\)
\(=\frac{10}{15}-\frac{5}{15}+\frac{7}{15}\)
\(=\frac{12}{15}\)
\(=\frac{4}{5}\)
c, \(\frac{3}{8}.3\frac{1}{3}\)
\(=\frac{3}{8}.\frac{10}{3}\)
\(=\frac{10}{8}\)
\(=\frac{5}{4}\)
d, \(\frac{-3}{5}+0,8.\left(-7\frac{1}{2}\right)\)
\(=\frac{-3}{5}+\frac{4}{5}.\frac{-15}{2}\)
\(=\frac{-3}{5}+\frac{-60}{10}\)
\(=\frac{-3}{5}+\frac{-30}{5}\)
\(=\frac{-33}{5}\)
e, \(\frac{2}{5}.8\frac{1}{3}+1\frac{2}{3}.\frac{2}{5}\)
\(=\frac{2}{5}.\left(8\frac{1}{3}+1\frac{2}{3}\right)\)
\(=\frac{2}{5}.10\)
\(=4\)
f, \(\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}\)
\(=\frac{3}{7}.\left(19\frac{1}{3}-33\frac{1}{3}\right)\)
\(=\frac{3}{7}.-14\)
\(=-6\)
~Study well~
#KSJ
\(a,4\frac{5}{9}:\frac{\left(-5\right)}{7}+\frac{4}{9}:\frac{-5}{7}\)
\(=\frac{41}{9}.\frac{-7}{5}+\frac{4}{9}.\frac{-7}{5}\)
\(=\frac{-7}{5}.\left(\frac{41}{9}+\frac{4}{9}\right)\)
\(=-\frac{7}{9}.5\)
\(=-7\)
a)Bn Kaito Kid làm rùi!
B)Không viết lại đề
\(=\frac{11}{7}\cdot\left(-\frac{3}{5}+\frac{4}{9}-\frac{2}{5}+\frac{5}{9}\right)=\frac{11}{7}\cdot0=0\)
c)Không viết lại đề
\(A=\left(2+4+...+100\right)\left(\frac{3}{5}\cdot\frac{10}{7}-\frac{6}{7}\right):\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(2+4+6+...+100\right)\cdot0\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)=0\)
\(=\frac{7}{6}\cdot\left(\frac{3}{26}-\frac{3}{13}+\frac{1}{10}-\frac{8}{5}\right)=\frac{7}{6}\left(\frac{-3}{26}+\frac{-17}{10}\right)=\frac{7}{6}\cdot\frac{236}{130}=\frac{413}{195}\)
D)
Bài 1
\(a,\left(\frac{3}{5}\right)^2-\left[\frac{1}{3}:3-\sqrt{16}.\left(\frac{1}{2}\right)^2\right]-\left(10.12-2014\right)^0\)
\(=\frac{9}{25}-\left[\frac{1}{9}-4.\frac{1}{4}\right]-1\)
\(=\frac{9}{25}-\left(-\frac{8}{9}\right)-1\)
\(=\frac{9}{25}+\frac{8}{9}-1\)
\(=\frac{56}{225}\)
\(b,|-\frac{100}{123}|:\left(\frac{3}{4}+\frac{7}{12}\right)+\frac{23}{123}:\left(\frac{9}{5}-\frac{7}{15}\right)\)
\(=\frac{100}{123}:\left(\frac{4}{3}\right)+\frac{23}{123}:\frac{4}{3}\)
\(=\left(\frac{100}{123}+\frac{23}{123}\right):\frac{4}{3}\)
\(=1:\frac{4}{3}=\frac{3}{4}\)
Phần c đăng riêng vì mk chưa tìm đc cách giải bt mỗi đáp án :v
\(c,\frac{\left(-5\right)^{32}.20^{43}}{\left(-8\right)^{29}.125^{25}}\)
\(=\frac{\left(-5\right)^{32}.\left(4.5\right)^{43}}{\left[4.\left(-2\right)\right]^{29}.\left(-5^3\right)^{25}}\)
\(=\frac{-5^{32}.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5\right)^{75}}\)
\(=\frac{\left(-5^4\right)^8.4^{43}.5^{43}}{4^{29}.\left(-2\right)^{29}.\left(5^3\right)^{25}}\)
\(=-\frac{1}{2}\)
\(A = {1\over2}-{3\over4}+{5\over6}-{7\over12}={6\over12}-{9\over12}+{10\over12}-{7\over12}\)\(={0\over12}=0\)
Bạn tham khảo nha https://olm.vn/hoi-dap/detail/16281729260.html
A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102
=1+0+0+....+102=103
b) |1-2x|>7
=> 1-2x>7 hoặc 1-2x<-7
=> 2x<-6 hoặc 2x>8
=> x<-3 hoặc x>4
1) Đặt \(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(\Rightarrow3D=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3D-D=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Leftrightarrow2D=1-\frac{1}{3^{100}}\)
\(\Leftrightarrow D=\frac{3^{100}-1}{2\cdot3^{100}}\)
Vậy \(D=\frac{3^{100}-1}{2\cdot3^{100}}\)
2) Ta có: \(\frac{49}{58}\cdot\frac{2^5}{4^2}-\frac{7^2}{-58}\cdot3\)
\(=\frac{49}{58}\cdot2-\frac{49}{58}\cdot3\)
\(=-1\cdot\frac{49}{58}\)
\(=-\frac{49}{58}\)