\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\) với 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

Câu 1: Sửa lạ đề chút nhé : 4x + 1  -> 4x -1 

 Đặt A = \(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)

=>  \(\sqrt{2}.A\)= ​\(\sqrt{4x-1+2\sqrt{4x-1}+1}+\sqrt{4x-1-2\sqrt{4x-1}+1}\)

\(\sqrt{\left(\sqrt{4x-1}+1\right)^2}+\sqrt{\left(\sqrt{4x-1}-1\right)^2}\)

\(\left|\sqrt{4x-1}+1\right|+\left|\sqrt{4x-1}-1\right|\)

Vì \(\frac{1}{4}< x< \frac{1}{2}\Rightarrow0< 4x-1< 1\Rightarrow0< \sqrt{4x-1}< 1\)

nên \(\sqrt{2}A=\)\(\sqrt{4x-1}+1+1-\sqrt{4x-1}\)=2

=> \(A=2:\sqrt{2}=\sqrt{2}\)

Câu 2. Có: \(9-4\sqrt{2}=8-2.2\sqrt{2}+1=\left(2\sqrt{2}-1\right)^2\)

=> \(\sqrt{9-4\sqrt{2}}=2\sqrt{2}-1\)

=> ​\(4+\sqrt{9-4\sqrt{2}}=4+2\sqrt{2}-1=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)

=> \(\sqrt{4+\sqrt{9-4\sqrt{2}}}=\sqrt{2}+1\)

=> \(53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}=53-20\left(\sqrt{2}+1\right)=33-2.10\sqrt{2}=5^2-2.5.2\sqrt{2}+8=\left(5-2\sqrt{2}\right)^2\)

=> \(\sqrt{53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}}=5-2\sqrt{2}\)

\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)

27 tháng 5 2017

\(B=\sqrt{x+\sqrt{x^2-1}}-\sqrt{x-\sqrt{x^2-1}}\)

\(B^2=x+\sqrt{x^2-1}+x-\sqrt{x^2-1}-2\sqrt{\left(x+\sqrt{x^2-1}\right)\left(x-\sqrt{x^2-1}\right)}\)

\(B^2=2x-2\sqrt{x^2-x^2+1}\)

\(B^2=2x-2\)

\(\Rightarrow B=\sqrt{2x-2}\)

27 tháng 5 2017

\(C=\sqrt{x+2\sqrt{x-1}}-\sqrt{x-1}\left(ĐK:x\ge1\right)\)

\(C=\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{x-1}\)

\(C=\sqrt{x-1}+1-\sqrt{x-1}=1\)

20 tháng 5 2019

a)\(\)https://www.cymath.com/answer?q=2sqrt(27)-6sqrt(4%2F3)%2B3%2F5sqrt(75)

20 tháng 5 2019

\(M=2\sqrt{27}-6\sqrt{\frac{4}{3}}+\frac{3}{5}\sqrt{75}=2\sqrt{3^2.3}-6\sqrt{\frac{2^2.3}{3^2}}+\frac{3}{5}\sqrt{5^2.3}=.\) 

        \(=6\sqrt{3}-4\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)  

\(P=\frac{2}{x-1}\sqrt{\frac{x^2-2x+1}{4x^2}}.Với...0< x< 1\Leftrightarrow\)  \(P=\frac{2}{x-1}\sqrt{\frac{\left(x-1\right)^2}{\left(2x\right)^2}}=\frac{2}{(x-1)}.\frac{\left(1-x\right)}{2x}=\frac{-1}{x}.\)

28 tháng 7 2016

a)\(x+3+\sqrt{x^2-6x+9}\)

\(=x+3+\sqrt{\left(x-3\right)^2}\)

\(=x+3+x-3\)

\(=2x\)

b)\(\sqrt{x^2+4x+4}-\sqrt{x^2}\)

\(=\sqrt{\left(x+2\right)^2}-x\)

\(=x+2-x\)

=2

c)\(\sqrt{\frac{x^2-2x+1}{x-1}}\)

\(=\sqrt{\frac{\left(x-1\right)^2}{x-1}}\)

\(=\sqrt{x-1}\)

5 tháng 8 2019

\(E=\frac{2}{x-1}\sqrt{\frac{x^2-2x+1}{4x^2}}\)

\(E=\frac{2}{x-1}\cdot\frac{\sqrt{\left(x-1\right)^2}}{\sqrt{\left(2x\right)^2}}\)

\(E=\frac{2}{x-1}\cdot\frac{-\left(x-1\right)}{2x}\)

\(E=\frac{-1}{x}\)

_________

\(G=\frac{x-16}{\sqrt{x-7}-3}\)

\(G=\frac{\left(\sqrt{x-7}-3\right)\left(\sqrt{x-7}+3\right)}{\sqrt{x-7}-3}\)

\(G=\sqrt{x-7}+3\)

26 tháng 8 2020

a) \(x+3+\sqrt{x^2-6x+9}\left(x\le3\right)\)

\(=x+3+\sqrt{\left(x-3\right)^2}\)

\(=x+3+\left|x-3\right|\)

\(=x+3-\left(x-3\right)\)

\(=x+3-x+3\)

\(=6\)

b) \(\sqrt{x^2+4x+4}-\sqrt{x^2}\left(-2\le x\le0\right)\)

\(=\sqrt{\left(x+2\right)^2}-\sqrt{x^2}\)

\(=\left|x+2\right|-\left|x\right|\)

\(=x+2-\left(-x\right)\)

\(=x+2+x\)

\(=2x+2=2\left(x+1\right)\)

c) \(\frac{\sqrt{x^2-2x+1}}{x-1}\left(x>1\right)\)

\(=\frac{\sqrt{\left(x-1\right)^2}}{x-1}\)

\(=\frac{\left|x-1\right|}{x-1}\)

\(=\frac{x-1}{x-1}=1\)

d) \(\left|x-2\right|+\frac{\sqrt{x^2-4x+4}}{x-2}\)

\(=\left|x-2\right|+\frac{\sqrt{\left(x-2\right)^2}}{x-2}\)

\(=\left|x-2\right|+\frac{\left|x-2\right|}{x-2}\)

\(=\left|x-2\right|+\frac{-\left(x-2\right)}{x-2}\)

\(=\left|x-2\right|-1\)

\(=-\left(x-2\right)-1\)

\(=-x+2-1\)

\(=-x+1=-\left(x-1\right)\)