\(\dfrac{a}{\left(a-b\right)\left(a-c\right)}+\dfrac{b}{\left(b-c\ri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2018

\(\dfrac{a}{\left(a-b\right)\left(a-c\right)}+\dfrac{b}{\left(b-c\right)\left(b-a\right)}+\dfrac{c}{\left(c-a\right)\left(c-b\right)}=\dfrac{a}{\left(a-b\right)\left(a-c\right)}-\dfrac{b}{\left(b-c\right)\left(a-b\right)}+\dfrac{c}{\left(a-c\right)\left(b-c\right)}=\dfrac{a\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}-\dfrac{b\left(a-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\dfrac{c\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\dfrac{ab-ac}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}-\dfrac{ab-bc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\dfrac{ac-bc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\dfrac{ab-ac-ab+bc+ac-bc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=\dfrac{0}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=0\)

21 tháng 12 2017

\(N=\dfrac{\left(a-b\right)\left(b+c\right)\left(a+c\right)+\left(b-c\right)\left(a+b\right)\left(c+a\right)+\left(c-a\right)\left(a+b\right)\left(b+c\right)+\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(=\dfrac{\left(a+c\right)\left(ab-b^2+ac-bc+ab-ac+b^2-cb\right)+\left(c-a\right)\left(ab+b^2+ac+bc+ab-b^2-ac+cb\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(=\dfrac{\left(a+c\right)\left(2ab-2bc\right)+\left(c-a\right)\left(2ab+2bc\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(=\dfrac{2b\left(a+c\right)\left(a-c\right)+2b\left(c-a\right)\left(a+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2b\left(c+a\right)\left(a-c+c-a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)

21 tháng 12 2017

Mình chỉ biết mỗi cách quy đồng...... Rồi kết hợp ....

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\) đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\) ta có...
Đọc tiếp

từ giả thiết, ta có \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

đặt \(\left(\dfrac{1}{xy};\dfrac{1}{yz};\dfrac{1}{zx}\right)=\left(a;b;c\right)\Rightarrow a+b+c=1\) =>\(\left(\dfrac{ac}{b};\dfrac{ab}{c};\dfrac{bc}{a}\right)=\left(\dfrac{1}{x^2};\dfrac{1}{y^2};\dfrac{1}{z^2}\right)\)

ta có VT=\(\dfrac{1}{\sqrt{1+\dfrac{1}{x^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{y^2}}}+\dfrac{1}{\sqrt{1+\dfrac{1}{z^1}}}=\sqrt{\dfrac{1}{1+\dfrac{ac}{b}}}+\sqrt{\dfrac{1}{1+\dfrac{ab}{c}}}+\sqrt{\dfrac{1}{1+\dfrac{bc}{a}}}\)

=\(\dfrac{1}{\sqrt{\dfrac{b+ac}{b}}}+\dfrac{1}{\sqrt{\dfrac{a+bc}{a}}}+\dfrac{1}{\sqrt{\dfrac{c+ab}{c}}}=\sqrt{\dfrac{a}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\dfrac{b}{\left(b+c\right)\left(b+a\right)}}+\sqrt{\dfrac{c}{\left(c+a\right)\left(c+b\right)}}\)

\(\le\sqrt{3}\sqrt{\dfrac{ac+ab+bc+ba+ca+cb}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\sqrt{3}.\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

ta cần chứng minh \(\sqrt{\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9}{4}\Leftrightarrow8\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

<=>\(8\left(a+b+c\right)\left(ab+bc+ca\right)\le9\left(a+b\right)\left(b+c\right)\left(c+a\right)\) (luôn đúng )

^_^

0
22 tháng 12 2017

Cho em hỏi chút,số đội một khác nhau là gì ạ?

24 tháng 12 2017

Với a,b,c là các số đôi một khác nhau nha bạn.

20 tháng 8 2018

Ta có A=\(\dfrac{a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\dfrac{a^3\left(b-c\right)+b^3c-c^3b-a\left(b^3-c^3\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\dfrac{a^2\left(b-c\right)+bc\left(b^2-c^2\right)-a\left(b-c\right)\left(b^2+bc+c^2\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

=\(\dfrac{a^3+b^2c+c^2b-ab^2-abc-ac^2}{\left(a-b\right)\left(b-c\right)}=\dfrac{a\left(a^2-b^2\right)-c^2\left(a-b\right)-bc\left(a-b\right)}{\left(a-b\right)\left(c-a\right)}=\dfrac{a^2+ab-c^2-bc}{c-a}=\dfrac{\left(a-c\right)\left(a+c\right)+b\left(a-c\right)}{c-a}=-\left(a+b+c\right)\)

10 tháng 9 2018

Sao lại bằng -(a + b + c) vậy bạn?

26 tháng 7 2018

T đề nghị ban EDOGAWA CONAN không dùng nick k\này hỏi rồi lấy nick chính trả lời và tự tick nữa. T biết hai cậu là 1 mà không muốn nói thôi.

P/s:Nếu thế nữa t sẽ báo phynit.

26 tháng 7 2018

Đặt : \(x=\dfrac{a+b}{a-b}\) ; \(y=\dfrac{b+c}{b-c}\) ; \(z=\dfrac{c+a}{c-a}\)

Ta có : \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)

\(\Leftrightarrow xy+yz+zx=-1\)

\(\left(x+y+z\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge0\)

\(\Leftrightarrow x^2+y^2+z^2\ge2\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{\left(a-b\right)^2}+\dfrac{\left(b+c\right)^2}{\left(b-c\right)^2}+\dfrac{\left(c+a\right)^2}{\left(c-a\right)^2}\ge2\left(đpcm\right)\)

\(B=\dfrac{\left(4a^2-1\right)\left(b-c\right)-\left(4b^2-1\right)\left(a-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\dfrac{4c^2-1}{\left(a-c\right)\left(b-c\right)}\)

\(=\dfrac{4a^2b-4a^2c-b+c-4ab^2+4b^2c+a-c}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\dfrac{4ac^2-4bc^2-a+b}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2b-4a^2c+a-b-4ab^2+4b^2c+4ac^2-4bc^2-a+b}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2b-4ab^2-4a^2c+4ac^2-4bc^2+4b^2c}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2\left(b-c\right)+4bc\left(b-c\right)-4a\left(b^2-c^2\right)}{\left(b-c\right)\left(a-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2+4bc-4a\left(b+c\right)}{\left(a-c\right)\left(a-b\right)}\)

\(=\dfrac{4a^2-4ab+4bc-4ac}{\left(a-c\right)\left(a-b\right)}\)

\(=\dfrac{4a\left(a-b\right)-4c\left(a-b\right)}{\left(a-c\right)\left(a-b\right)}=4\)