Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
\(A=\frac{1}{1\left(2n-1\right)}+\frac{1}{3\left(2n-3\right)}+...+\frac{1}{\left(2n-1\right).1}\)
\(A=\frac{1}{2n}\left[\frac{2n-1+1}{1\left(2n-1\right)}+\frac{2n-3+3}{3\left(2n-3\right)}+...+\frac{1+2n-1}{\left(2n-1\right).1}\right]\)
\(A=\frac{1}{2n}\left[\frac{1}{1}+\frac{1}{2n-1}+\frac{1}{3}+\frac{1}{2n-3}+...+\frac{1}{2n-1}+\frac{1}{1}\right]\)
\(A=\frac{1}{n}\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2n-3}+\frac{1}{2n-1}\right)\)
\(\Rightarrow\frac{a}{b}=\frac{1}{n}\).
\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\dfrac{\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(=\dfrac{\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)}{2}\)
\(=\dfrac{\left(5^{16}-1\right)\left(5^{16}+1\right)}{2}\)
\(=\dfrac{5^{32}-1}{2}\)
\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(2P=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{32}+1\right)\)
\(2P\)\(=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(2P=\)\(\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(2P=\left(5^{16}-1\right)\left(5^{16}+1\right)\left(5^{32}+1\right)\)
\(2P=5^{32}-1\)
\(P=\dfrac{5^{32}-1}{2}\)
Đặt \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\).Ta có :
\(=>\left(3-1\right)A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=>2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=>2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
...............................................................................
Cuối cùng \(=>2A=3^{64}-1\).
\(=>A=\frac{3^{64}-1}{2}\)
Đặt \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(\Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=...........................................\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)=3^{64}-1\)
\(\Rightarrow A=\frac{3^{64}-1}{2}\)
(a+b+c)3=(a+b)3+3(a+b)2c+3(a+b)c2+c3
=a3+b3+3ab.(a+b)+3(a+b)2c+3(a+b)c2+c3
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
=a3+b3+c3+3(a+b)[a.(b+c)+c.(b+c)]
=a3+b3+c3+3(a+b)(b+c)(c+a)
=>dpcm
P=12(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=>2P=24(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(52-1)(52+1)(54+1)(58+1)(516+1)
=(54-1)(54+1)(58+1)(516+1)
=(58-1)(58+1)(516+1)
=(516-1)(516+1)
=532-1
==>P=(532-1)/2